首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   15篇
化学   25篇
物理学   4篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   9篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
11.
共价有机框架材料催化研究进展   总被引:1,自引:0,他引:1  
共价有机框架材料(COFs)是一类具有高比表面积、高孔隙率、高结晶度的结构多样性多孔材料.由于COFs具有可设计性、易功能化的特点,可通过“自上而下”或者后修饰策略将具有催化活性的官能团或金属颗粒嵌入到材料骨架当中,从而设计出高效催化剂.COFs已逐渐在多相催化及其它催化领域展现出非常大的应用价值.本文综述了COFs作为催化剂载体在多种催化反应中的合成策略与应用,对COFs催化剂的现状进行了总结与展望,同时指出该领域面临的问题与挑战.  相似文献   
12.
采用浸渍法制备了Ni、Mg双金属负载在堇青石表面形成的蜂窝状催化剂,研究了焙烧温度对催化剂结构和生物质粗燃气重整反应性能的影响.结果表明,在不同焙烧温度下主要有NiO和NiMgO2固溶体物相生成.相比于其他焙烧温度,催化剂在650 ℃焙烧温度下更有利于镍活性金属位的分散和活性位数量的增加.在干重整反应条件下,CH4、CO2的转化率以及H2、CO产率随焙烧温度的升高呈现先增加后降低的变化趋势,在650 ℃焙烧温度下达到最高.在水蒸气重整反应条件下主要发生烃类产物与H2O和CO2的重整反应以及水煤气变换反应,焙烧温度的升高有利于水煤气反应的进行.此外,焙烧温度对于干重整反应条件下的H2/CO体积比调节影响较小,而对于水蒸气重整反应条件下的H2/CO体积比可进行选择性调节.  相似文献   
13.
木质素是生物质中碳资源密度最高的组分.木质素到高品质液体燃料的转化主要通过其解聚的单环酚类化合物经加氢脱氧工艺来实现.来源于木质素的酚类化合物的加氢脱氧产物一般为C6~C10之间的碳氢化合物,与现有的商品汽油组分碳数分布一致,是理想的交通替代燃料.酚类化合物的加氢脱氧研究近年来发展迅速,文献报道数量激增.本文对硫化态Mo基催化剂、贵金属催化剂及非硫化非贵金属催化剂作用下单环酚类化合物的加氢脱氧反应特性分别进行了回顾,对典型酚类模型化合物在催化反应机理进行了简述,并对载体材料在加氢脱氧过程中的作用进行了介绍.随后,在此基础上总结了当前酚类化合物加氢脱氧过程中的难点,并对下一步的技术发展方向进行展望.  相似文献   
14.
在酸性条件下,水-四氢呋喃混合溶剂中转化纤维素制备了平台化合物5-羟甲基糠醛(HMF).在纤维素浓度仅为2.4wt%时,可以得到38.6%的HMF,但是随着纤维素浓度的增加,胡敏素和乙酰丙酸成为主要产物.利用液相色谱-多级串联质谱联用技术检测到了分子式为C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 和C12H16O8的一系列副产物.C9H16O4是通过四氢呋喃开环为1,4-丁二醇再与乙酰丙酸酯化反应得到,而C10H14O4是通过四氢呋喃开环后与HMF醚化得到.C11H12O4是由5-羟甲基糠醛与乙酰丙酸发生酯化反应得到,C12H10O5是由HMF自身醚化得到,而C12H16O8是HMF与葡萄糖经过缩醛反应得到.HMF的自身醚化反应及HMF与1,4-丁二醇的醚化反应是主要的副反应.  相似文献   
15.
碱性条件下废轮胎真空热裂解研究   总被引:5,自引:1,他引:5  
研究了废轮胎橡胶粉在450℃~600℃真空热解系统中热解的特性,以及温度和添加Na2CO3、NaOH对热解气液态产物的影响。实验表明,真空下废轮胎热解油收率在550℃时达到最大值,为48%左右。添加3%的NaOH能明显促进废轮胎橡胶热解,480 ℃时油产率达到最大值49.66%,随后随着温度的升高油产率呈现下降趋势。添加3%的Na2CO3对热解的促进作用不明显。热解气体产物主要有H2、CO、CH4、CO2、C2H4、C2H6以及少量其他化合物。NaOH的加入使气体产品中的H2相对体积分数明显增加,而CH4、CO、C2等的体积分数降低。通过GC和GC-MS分析热解石脑油发现,热解油品中含有11%以上的柠檬油精。  相似文献   
16.
负载PtSn金属助剂的镁铝水滑石上的丙烷脱氢反应研究   总被引:2,自引:2,他引:0  
我们研究了以镁铝水滑石作为载体,利用水滑石层间阴离子的可交换性,负载活性金属铂和锡的丙烷脱氢反应.在镁铝水滑石载体中加入Ga能够影响丙烷脱氢活性,当镓的含量为1%时催化剂丙烷脱氢反应活性最高,反应初始时,丙烷转化率为46.5%,反应2 h后,丙烷转化率仍有37.5%.当以Mg(Ga)(Al)O-1%为载体时,考察了不同H_2/C_3H_8摩尔比对丙烷脱氢活性的影响,结果表明当H_2/C_3H_8摩尔比为0.5∶1时,丙烷脱氢反应具有最佳的反应活性,即当在原料气中加入H_2时,能够使得丙烷脱氢的转化率大幅度提升,且选择性也有所提升.烷烃脱氢是一个吸热反应,同时考察了温度对烷烃脱氢反应性能影响,结果表明温度越高,丙烷脱氢反应具有更高的转化率.对催化剂进行长时间寿命实验考察,发现当反应经过40 h后,丙烷的转化率仍有23.5%,说明Pt Sn-Mg(Ga)(Al)O-1%催化剂具有较好的稳定性.  相似文献   
17.
采用超声浸渍法制备了Cu、Fe 双活性组元改性的双孔载体(M)催化剂, 采用N2物理吸附、H2程序升温 还原/脱附(H2-TPR/TPD)、X射线衍射(XRD)等表征手段考察了催化剂中Cu-Fe的相互作用, 并在固定床反应器 中评价了Cu/Fe摩尔比的改变对低碳醇合成反应性能的影响. 结果表明: 小孔硅溶胶浸渍在大孔硅凝胶中可形 成具有不同纳米孔径结构的双孔载体, 增加小孔硅溶胶的含量可促使双孔载体中小孔纳米结构尺寸变小. Fe/ Cu摩尔比的增加有利于铜物种在载体表面的分散, 促进了表层CuO和Fe2O3的还原, 加强了双孔载体内孔道 与铜铁氧化物之间的相互作用, 促使了单质铜的分散和铁碳化物的生成. CO加氢反应活性和低碳醇时空收率 随着Fe/Cu 摩尔比的逐渐增加呈现增加的变化趋势. 当Fe/Cu 摩尔比增加到30/20 时, Cu-Fe 基双孔载体催化 剂的CO转化率增加到46%, 低碳醇的时空收率增加到0.21 g·mL-1·h-1, C2+OH/CH3OH质量比达到1.96.  相似文献   
18.
研究了2.45GHz微波场中I型乙烷水合物及II型丙烷水合物的热激分解过程,基于晶体表面两步分解机制的动力学模型,结合传热传质分析了其分解特性.结果表明:水合物在微波场中的加热分解是一个与实际微波电磁场相互耦合的过程,微波体积加热的特点强化了水合物颗粒表层的传热传质过程,时间累积的热效应增大了水合物晶体破解速率;在120至540W入射功率下,乙烷、丙烷水合物气化速率分别达到0.109-0.400mol·min-·1L-1及0.090-0.222mol·min-1·L-1.在一定范围内增大微波功率可显著提高水合物分解速率,其中乙烷水合物一直处于功率主控区,丙烷水合物更早进入功率和分解动力机制共同控制区.  相似文献   
19.
生物油重质组分模型物热解行为及其动力学研究   总被引:2,自引:0,他引:2  
采用TG-FT-IR在非等温条件下对生物油重质组分酚、醛和糖类模型代表物(丁香酚、香草醛、左旋葡聚糖)进行热解特性及其热解动力学分析。TG-DTG曲线和FT-IR测试数据显示,重质组分模型物热解的先后次序是酚类、醛类、糖类物质。香草醛、丁香酚均为一个主热解阶段,主要产物为水、烷烯烃、CO2、CO和小分子酚、芳香醛。左旋葡聚糖热解分两阶段进行,热解发生在较高温区(180~370℃),主要热解产物有CO2、烷烯烃、醛、酮和环醚,少量的CO和水。混合物热解分为三个阶段,产物与单一模型物热解产物相似,但有少量缩醛低聚物。对比单一组分,混合物中羰基和羟基组分在较高温区(≥300℃)存在相互作用,生成难分解的缩聚物。其中,糖类是影响重质组分热解速率的主要物质。根据热重数据对热解各阶段进行动力学拟合,确定了模型物热解反应动力学三因素。平均表观活化能和反应级数分别为:E左旋葡聚糖第一、第二阶段分别为115.80 kJ/mol(0.5级)、141.19 kJ/mol(2/3级); E混合物第一阶段为54.46 kJ/mol(1级)、第二阶段为50.67 kJ/mol(2/5级); E丁香酚为42.29 kJ/mol(0.7级); E香草醛为36.53 kJ/mol(0.95级)。  相似文献   
20.
在酸性条件下,水-四氢呋喃混合溶剂中转化纤维素制备了平台化合物5-羟甲基糠醛(HMF).在纤维素浓度仅为2.4wt%时,可以得到38.6%的HMF,但是随着纤维素浓度的增加,胡敏素和乙酰丙酸成为主要产物.利用液相色谱-多级串联质谱联用技术检测到了分子式为C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 和C12H16O8的一系列副产物.C9H16O4是通过四氢呋喃开环为1,4-丁二醇再与乙酰丙酸酯化反应得到,而C10H14O4是通过四氢呋喃开环后与HMF醚化得到.C11H12O4是由5-羟甲基糠醛与乙酰丙酸发生酯化反应得到,C12H10O5是由HMF自身醚化得到,而C12H16O8是HMF与葡萄糖经过缩醛反应得到.HMF的自身醚化反应及HMF与1,4-丁二醇的醚化反应是主要的副反应.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号