首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   11篇
力学   65篇
数学   45篇
物理学   11篇
  2018年   1篇
  2013年   1篇
  2002年   2篇
  1999年   1篇
  1997年   9篇
  1996年   1篇
  1995年   9篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1979年   2篇
  1954年   1篇
  1947年   1篇
  1939年   6篇
  1937年   2篇
排序方式: 共有121条查询结果,搜索用时 40 毫秒
11.
红典弹性板理论采用了著名的克希霍夫(Kirchhoff)-拉甫(Love)的经典基本假定,在卡氏张量坐标xi(i=0,1,2)中,这些基本假定是:(1)略去横向即X0轴向正应变,即假定e00=0;(2)略去横向剪应变,即假定e0a=0,其中a=1,2;(3)略去横向正应力,即假定σ00=0。人们利用这些假定,建立了应变位移关系和应力位移关系,再利用应力平衡的三维方程,通过跨厚度的积分,找到弹性板中  相似文献   
12.
本文在圆薄板大挠度问题摄动解法(1948).(1954)的基础上,求得了椭圆板大挠度问题的摄动解.本文的公式推导是1957年以前完成的,由于某些原因,长期未得发表.1959年见到Nash-Cooley以摘要形式发表的类似工作,但只有λ=a/b=2的数值结果.这里将原先推导的正确至二级近似的分析公式以及计算结果发表.其中包括泊桑比v=0.25,0.30,0.35,椭圆半径比λ=1,2,3.4.5的全部计算结果,以备工程设计计算之用.  相似文献   
13.
前文[1]给出了不用Kkrchhoff-Love假设的三维弹性板的一级近似理论及其边界条件,这个理论有6个微分方程求解6个待定平衡函数,即u0,ua,A(0),S(2)a,其中有3个方程为一组求解3个待定平面函数u0,S(2)a,而另一组3个方程求解另外3个待定平面函数ua,A(0),它们的边界条件和这些方程一样,可以从本问题的广义变分原理的泛函变分的驻值条件求得,当板厚h和板宽a之比h/a很小时  相似文献   
14.
AFURTHERSTUDYOFTHETHEORYOFELASTICCIRCULARPLATESWITHNON-KIRCHHOFF-LOVEASSUMPTIONSChienWei-zang(钱伟长)RuXue-ping(茹学萍)(ShanghaiUni...  相似文献   
15.
前文[1]给出了不用Kirchhoff-Love假设的三维弹性板的一级近似理论及其边界条件。这个理论有6个微分方程求解6个待定平面函数,即u0,uα,A(0),S(2)α,其中有3个方程为一组求解3个待定平面函数u0,S(2)α,而另一组3个方程求解另外3个待定平面函数uα,A(0).它们的边界条件和这些方程一样,可以从本问题的广义变分原理的泛函变分的驻值条件求得,当板厚h和板宽α之比h/α很小时,这种解接近于经典薄板解,当h/α值较大时(如h/α≈0.3),这种解和经典薄板解,就有较大差别。但这种差别在h/α值的什么范围内是合理的这一问题,并不清楚,为了解决这一问题,我们必须研究本问题的二级近似理论。本文是前文的继续,我们将用本问题的广义变分原理的泛函变分驻值条件,导出9个微分方程和有关边界条件,用以求解9个二级近似解的待定平面函数u0,uα,A(0),A(1),S(2)α,S(3)α,把二级近似理论解和一级近似理论以及经典理论的解相比较,就能明确一级近似理论的适用范围,这里必须指出,二级近似理论也可以分成两组方程求解,求解过程也并不过分复杂。有关符号和前文相同,这里必须指出,二级近似理论也可以分成两组方程求解,求解过程也并不过分复杂.有关符号和前文相同,这里将不再重复。  相似文献   
16.
本文在不用克希霍夫一拉夫假设的弹性板一般理论的基础上,建立了不用克希霍夫一拉夫假设的弹性圆板的一级近似理论,对圆板在四周固定和均布载荷的条件下,得到了具体的轴对称分析解,并和经典的圆薄板解进行了比较,证明本文新解更加接近实验结果,本文也具体地讨论了理论结果中厚度增大时的影响。  相似文献   
17.
本文用合成展开摄动法,把外场解和内层解结合起来,求解圆薄板大挠度问题.本文把Hencky的薄膜解当作外场解的一级近似解,并求出了外场解的二级近似解.利用边界内层坐标,求得了相应的各级内层解,即边界层解.本文采用最大位移和板厚之比的倒数作为小参数,所得结果大大改进了1948年作者所得的结果.  相似文献   
18.
In this paper, the generalizd variational principles of plate bending, froblems are established from their minimum potential energy principle and minimum complementary energy principle through the elimination of their constraints by means of the method of Lagrange multipliers. The involutory transformations are also introduced in order to reduce the order of differentiations for the variables in the variation. Funhermore, these involutory transformations become infacl the additional constraints in the varialion. and additional Lagrange multipliers may be used in order to remove these additional constraints. Thus, various multi-variable variational principles are obtained for the plate bending problems. However, it is observed that. nol all the constrainls ofva’iaticn can be removed simply by the ordinary method of linear Lagrange multipliers. In such cases, the method of high-order Lagrange multipliers are usedto remove iliose constrainls left over by ordinary linear multiplier method. And consequently. some funct ionals of more general forms are oblained for the generaleed variational principles of plate bending problems.  相似文献   
19.
柱形弹体撞击塑性变形的G.I.泰勒理论的分析解及其改进   总被引:1,自引:0,他引:1  
柱形弹体对刚性靶体的纵向撞击塑性变形理论是G.I.泰勒[1]首先提出的.这个理论的重要性在于通过这个理论可以从实验数据计算动力屈服强度,而且从实验结果[2]中看到,动力屈服强度和撞击速度无关,动力屈服强度高于静力屈服强度,对某些材料而言,可以超出好几倍.这样就为弹塑性撞击研究提供了一个重要的根据.但是,泰勒理论由于微分方程的复杂性,求解过程都是数值计算,这样对使用其结果时深感不便.本文提供了全部分析解,并对其结果进行了讨论.本文对冲量计算进行了修正,修正理论的分析解指出,其结果比泰勒理论的解更加符合实验[2].  相似文献   
20.
There are some common difficulties encountered in elastic-plastic impact codes such as EPIC[1,2], NONSAP[3] etc. Most of these codes use the simple linear functions usually taken from static problems to represent the displacement components. In such finite element formulation, the strain and stress components are constants in every element. In the equations of motion, the stress components in general appear in the form of their space derivatives. Thus, if we use such form functions to represent the displacement components, the effect of internal stresses to the equations of motion vanishes identically. The usual practice to overcome such difficulties is to establish as self-equilibrium system of internal forces acting on various nodal points by means of transforming equations of motion into variational form of energy relation through the application of virtual displacement principle. The nodal acceleration is then calculated from the total force acting on this node from all the neighbouring elements. The transformation of virtual displacement principle into the variational energy form is performed on the bases of continuity conditions of stress and displacement throughout the integrated space. That is to say, on the interface boundary of finite element, the assumed displacement and stress functions should be conformed. However, it is easily seen that, for linear form function of finite element calculation, the displacement continues everywhere, but not the stress components. Thus, the convergence of such kind of finite element computation is open to question. This kind of treatment has never been justified even in approximation sense. Furthermore, the calculation of nodal points needs a rule to calculate the mass matrix. There are two ways to establish mass matrix, namely lumped mass method and consistent mass method [4]. The consistent mass matrix can be obtained naturally through finite element formulation, which is consistent to the assumed form functions. However, the resulting consistent mass matrix is not in diagonalized form, which is inconvenient for numerical computation. For most codes, the lumped mass matrix is used, and in this case, the element mass is distributed in certain assumed proportions to all the nodal points of this element. The lumped mass matrix is diagonalized with diagonal terms composed of the nodal mass. However, the lumped mass assumption has never been justified. All these difficulties are originated from the simple linear form functions usually used in static problems.In this paper, we introduce a new quadratic form function for elastic-plastic impact problems. This quadratic form function possesses diagonalized consistent mass matrix, and non-vanishing effect of internal stress to the equations of motion. Thus with this kind of dynamic finite element, all above-said difficulties can be eliminated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号