首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   35篇
化学   40篇
综合类   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
以Nix/zMgy/zAl2/z(OH)2(CO3)1/z(z=x+y+2,x=0.2、1,5≤y≤11.8)水滑石为前驱体,经高温焙烧和H2还原后得到了一系列可用于甲醇-丁酮(MEK)烷基化反应的Nix/MgyAl2Oy+3(x=0.2、1,5≤y≤11.8)双功能催化剂,并采用X射线衍射(XRD)、透射电子显微镜(TEM)、程序升温还原(TPR)、程序升温脱附(TPD)等技术对催化剂的结构和形貌进行了表征。活性实验结果发现Ni/Mg9Al2O12催化剂具有较好的活性,在常压、温度280℃、原料液时空速(LHSV)6.0 h-1的条件下,丁酮的转化率为61.6%,3?戊酮(DEK)和3?甲基?2?丁酮(MIPK)的选择性分别为45.0%和17.7%。表征结果表明催化剂中合适的活性金属Ni和MgO含量对提高DEK和MIPK的选择性具有重要的影响,Ni与催化剂表面碱量之间的协同作用可能是影响催化剂的活性和选择性的主要因素。  相似文献   
12.
采用一步热解法制备了一系列氮掺杂石墨烯包覆的Ru基催化剂(Ru@G-CS),并将该催化剂用于对苯二甲酸二甲酯(DMT)加氢制备1,4-环己烷二甲酸二甲酯(DMCD)的反应中。利用粉末X射线衍射、拉曼光谱、N2吸附-脱附、X射线光电子能谱、扫描电子显微镜和透射电子显微镜对催化剂的组成、结构和表面形貌进行了表征。实验发现:Ru@G-CS (1∶4)催化剂具有最高的活性和优异的稳定性,在160℃、2.5 MPa、mDMT/mRu=833的条件下,反应4 h后DMT的转化率可达100%,DMCD的选择性高于98.5%;且该催化剂的活性经10次循环使用后未见明显下降。表征结果表明,氮掺杂石墨烯骨架中的氮原子可以促进Ru的分散,而且与负载的Ru之间存在较强的相互作用,这种电子-结构的协同效应可能是Ru@G-CS (1∶4)催化剂表现出优异的活性和稳定性的主要原因。  相似文献   
13.
微波辐射法可以在数分钟内将高度分散的Pt3Co合金颗粒负载于还原氧化石墨烯表面上.表征结果发现,与传统的溶剂热法和浸渍法相比,微波法制备的催化剂中贵金属的利用率高,合金颗粒的分布均匀,组成可控,同时氧化石墨烯的再石墨化现象也得到有效地抑制.采用微波法制备的Pt3Co/RGO-MW催化剂在肉桂醛加氢反应中具有较高的活性和和产物选择性.Pt3Co/RGO-MW中每一个Pt原子在70℃的转化频率高达23.8 min-1.  相似文献   
14.
采用共沉淀法合成了M0.02Cu0.4Mg5.6Al1.98(OH)16CO3 (M = Ru,Re)水滑石前驱体,然后经焙烧和还原制备了铜分散度较高的双功能M-Cu/固体碱催化剂.这些双功能催化剂在粗甘油氢解制备丙二醇反应中表现出了很好的催化活性.表征结果证明,M的加入增强了催化剂表面氢的吸附和活化,进而促进了甘油的转化.  相似文献   
15.
以Co-Al水滑石为前驱体,经高温焙烧和H2还原得到了系列可用于环氧丙醇加氢制备1,3-丙二醇(1,3-PDO)的Cox/Al2O3催化剂.研究结果表明,Co2/Al2O3催化剂具有最好的活性、产物选择性及良好的稳定性,在80℃,2 MPa H2下反应5 h后,环氧丙醇的转化率为99.8%,1,3-PDO的收率高达68.0%;不仅高于采用相同方法制备的Ni2/Al2O3和Cu2/Al2O3催化剂,也高于Al2O3负载的Pt,Pd和Ru催化剂.研究发现活性中心Co与Al2O3载体的酸性位点之间的协同作用可能是影响催化剂的活性及1,3-PDO选择性的重要因素.  相似文献   
16.
常压下Pt-Bi双金属催化剂上甘油选择性氧化(英文)   总被引:1,自引:0,他引:1  
梁丹  崔世玉  高静  王军华  陈平  侯昭胤 《催化学报》2011,(12):1831-1837
制备了一系列活性碳(AC)负载的Pt-Bi双金属催化剂,考察了催化剂中Bi含量对其催化甘油选择性氧化反应性能的影响.结果表明,适量Bi的添加可以改善催化剂中Pt的氧化还原性能,从而有利于催化剂活性的提高和二羟基丙酮(DIHA)产物的生成.当Bi的含量为5%时,该催化剂的活性最高,甘油转化率和DIHA选择性分别达到91.5%和49.0%.表征结果显示,Pt-Bi颗粒的平均粒径为3.8nm,且高度分散在催化剂表面,这是该催化剂具有较高活性的主要原因.  相似文献   
17.
以硝酸铝为铝源,以十六烷基三甲基溴化铵为阳离子模板剂,采用均匀沉淀法成功制得热稳定性较高和高度有序的介孔Al2O3(其比表面积179.8 m2/g,孔径5.4 am,孔体积0.3 cm3/g),并用于甲醇脱水制二甲醚反应中.结果表明,在280℃,液时空速为30 h-1条件下,甲醇转化率为90.2%,二甲醚时空收率最高可...  相似文献   
18.
 制备了可用于固定床反应器中甲醇脱水制备二甲醚的 Al2O3-HZSM-5 组合固体酸催化剂系列, 并采用 X射线衍射、扫描电镜、N2 物理吸附和氨气程序升温脱附等对其进行了表征. 结果表明, 在浸渍法制备的组合 Al2O3-HZSM-5 催化剂中, 细小的氧化铝颗粒高度分散在 HZSM-5 分子筛的周围; 在化学沉淀法制备的组合 Al2O3-HZSM-5 催化剂中, 一层氧化铝膜覆盖在 HZSM-5 分子筛的颗粒外层. 所制备的催化剂都具有较多的大孔和介孔比表面积, 在低温 (235 oC) 和高空速 (30 h–1) 条件下具有较高的甲醇脱水反应活性和稳定性, 其中在化学沉淀法制备的组合 Al2O3-HZSM-5 催化剂上, 二甲醚产率达到 13.5 g/(g•h).  相似文献   
19.
Ca-Al催化剂上甘油与碳酸二甲酯酯交换合成碳酸甘油酯   总被引:2,自引:0,他引:2  
生物柴油是一种环保、可再生、使用安全、可替代石化柴油的新型液体燃料,其产量和使用范围正逐年扩大。然而生物柴油生产过程中的主要副产物甘油严重过剩,因此甘油资源化转化和利用已经成为近年研究热点。甘油可以作为一种平台化合物实现向多种高附加值化学品的转化,例如通过催化氢解合成1,2-丙二醇,通过发酵和催化氧化制备二羟基丙酮,通过脱水制备丙烯醛和羟基丙酮,通过酯交换反应生成甘油酯等。其中,以甘油为原料合成的碳酸甘油酯(GC)具有很好的工业应用前景。以碳酸二甲酯(DMC)为原料与甘油进行酯交换合成GC是近年内比较有工业发展潜力的合成路线。前期研究发现,固体碱对该反应具有很好的催化活性,而且随着催化剂碱性增强,甘油转化率明显增加,然而当催化剂(如NaOH, KOH和K2CO3等)碱性过强时,产物选择性明显降低。水滑石类化合物是一种常见的碱性温和的固体催化剂,而且其碱性与结构可以调节,因此我们选择了一种常见水滑石——水铝钙石作为本研究的重点。 本文通过共沉淀法制备了一系列不同Ca/Al比(1–6)的Ca-Al水滑石,并以此作为前驱体制备了新型的固体碱催化剂。 XRD结果表明,当Ca/Al比为1–6时,所有样品都出现了明显的水滑石特征衍射峰,但当铝含量过高时会出现氢氧化铝杂相。 SEM结果发现,当Ca/Al =2–4时,样品中水滑石的结晶度高,有较完整的水滑石晶片, Ca/Al =6的样品中水滑石晶片较小, Ca/Al =1的样品中有明显的无定形氧化铝杂相。 TG-DSC结果表明, Ca/Al =2的样品除了几个与水滑石相关的特征失重峰以外,在786oC还检测到明显的热吸收峰,说明此时钙铝石已经发生分解,生成了单独的Ca12Al14O33晶相和氧化钙,这与SEM结果一致。这些水滑石经焙烧后用于温和条件下催化甘油与DMC酯交换生成GC的反应,发现上述催化剂对该反应具有很高的催化活性和目的产物选择性。当DMC与甘油的摩尔比为3时,70oC反应3 h后,甘油转化率达到93%, GC选择性高于97%。表征结果显示,甘油转化率主要取决于焙烧后Ca-Al催化剂中强碱性中心数量。其中经800oC焙烧后Ca/Al =2的样品中强碱性中心数量最多,因而表现出最高的催化活性。焙烧后催化剂中形成的Ca12Al14O33晶相在多次重复使用后仍可以稳定存在,但是表面CaO易流失,可能会降低催化剂的重复使用活性。  相似文献   
20.
建立了顶空气相色谱法同时测定甲烷、乙烷、乙烯、丙烯、一氟甲烷、三氟甲烷、二甲醚、甲醇等8种挥发性有机化合物含量的方法。样品以水作为溶剂稀释,在85℃条件下加热45 min,使气液达到平衡,采用HP-POLT Q柱分离,氢火焰离子检测器(FID)检测,外标法定量。8种有机化合物在规定范围内线性良好,回收率在94.0%~118.0%之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号