首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   7篇
  国内免费   4篇
化学   43篇
力学   12篇
综合类   1篇
数学   5篇
物理学   22篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   5篇
  2016年   8篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
11.
微型通风橱     
谌吉将  肖珍 《化学教育》2019,40(9):84-85
简单介绍设计的微型通风橱在处理有毒气体上的应用,使有毒气体参与或产生的反应更环保。  相似文献   
12.
Wet acid oxidation treatment methods have been widely reported as an effective method to purify and oxidize the surface of industrial multi-walled carbon nanotubes. This work examines the use of a concentrated HNO3/H2SO4 mixture in an attempt to optimize the purification procedure of industrial multi-walled carbon nanotubes with diameter distribution statistics. It is shown that acid treatments of several hours are enough to purify the nanotubes. The electrical and thermal conductivities of epoxy composites containing 0.05–0.25 wt% of an acid-treated multi-walled carbon nanotube have been studied. The electrical conductivity of the composites decreases by more than three orders, whereas the thermal conductivity of the same specimen increases very modestly as a function of the filler content.  相似文献   
13.
开发了一种基于雾化室加热的微流动注射进样系统,并用于血清中Pt的测定。该进样系统由微量毛细管雾化器、加热微型雾化室、八通道十六孔多功能旋转阀、蠕动泵和注射泵组成。研究了雾化室尺寸、加热温度和采样环体积对信号强度的影响。当雾化室内径为9 mm、加热段长度为6 cm,雾化室温度90 ℃,采样环体积为5 μL时,195Pt的信号强度提高了2.31倍,同时信号精密度从5.1%降至2.2%,并得到峰形良好的信号峰。该进样系统的试样消耗小、灵敏度和检出限均优于常规进样系统。10次测定10 μg/L的Pt标准溶液和血清样品溶液,峰高的RSD分别为2.9%和3.3%。该进样系统测得10个血清中的Pt含量与常规进样系统的测试结果无显著差异,在样品量稀少的情况下具有良好的应用价值。  相似文献   
14.
复杂气固两相系统的微观结构   总被引:2,自引:0,他引:2  
周浩生  陆继东 《实验力学》1999,14(2):190-196
流化床中的气固两相流动是一个高度复杂的非线性混沌系统。本文利用激光粒子动态分析仪(PDA)得到的循环流化床中颗粒脉动速度信号,采用FFT分析了脉动信号的宽频谱特征,在此基础上应用小波法分析了脉动信号的动态特征,得到了颗粒脉动速度的微观结构,指出颗粒脉动速度的非线性特性是流化床具有混沌特性的根源,且在不同的尺度上颗粒脉动速度表现出各向异性的特征。  相似文献   
15.
通过水热法及沉淀法,合成了纳微尺度铜金属有机框架催化剂。 通过FT-IR、TG及TEM等技术手段对其性能和结构进行了表征。 系统考察了催化剂、溶剂种类及用量、反应时间等因素对异丁香酚氧化制备香草醛的影响。 结果表明,用均苯三甲酸根(BTC)作配体时制备的催化剂Cu-BTC性能较佳。 以Cu-BTC为催化剂、30%(质量分数)H2O2为氧化剂、乙腈为介质,当n(异丁香酚):n(H2O2)=1:2.4时,50 ℃,反应8 h,异丁香酚转化率为94.4%,香草醛产率达到81.8%。 纳微尺度(粒径30~300 nm)Cu-BTC催化剂体现了良好的重复使用性能,连续反应5次,异丁香酚转化率保持在90%左右。  相似文献   
16.
乔金锁  刘冷  刘丹 《化学教育》2016,37(15):58-60
利用常用仪器、微型实验和相应物质的特征反应,对牛奶中所含营养素进行定性检验,结果表明:牛奶中含有蛋白质、维生素、钙、镁、磷、钾、铁元素。该实验具有微型化、绿色化、简约化和生活化的特质。  相似文献   
17.
The variation of main turbulent quantities in an isotropic turbulent flow, such as the decay of turbulent energy and the variation of Taylor microscale of turbulence with time are obtained, by employing a hot-wire anemometer and a nearly isotropic turbulent flow which is produced by a gridscreen located at the entrance of the test section in a low-level turbulence and low-speed wind tunnel in Peking University. The experimental results of the decay of turbulent energy and the variation of Taylor microscale of turbulence with time at the whole period from initial to final stage, normalized in an non-dimensional form, are consistent quite well with the computational results by the theory of the statistical vorticity structure[1]. The experimental results presented in this paper also agree with Townsend's results obtained in earlier years[2] as well as with Bennett's in the seventy's[3].  相似文献   
18.
We examine, via two-dimensional numerical simulation of a model system, some unsteady transient ignition scenarios and sustained oscillatory combustion modes that can occur in a single-pass, conductive channel, premixed microburner. These issues are relevant to the problem of ignition, evolution to stable combustion and the operational modes of microcombustors. First, we describe an unsteady ignition sequence that may occur when a single-pass microburner with initially cold walls has its exit walls heated and maintained at a fixed temperature. In particular, we demonstrate that as the heat from the exit walls propagates down the microburner walls, a reaction wave is driven rapidly down the channel towards the inlet via a sequence of oscillatory ignition and quenching transients. This scenario has been observed experimentally during the ignition of a single-pass microburner. Secondly, we show how an initial axial wall temperature gradient can lead to a variety of sustained combustion modes within the channel, including stable stationary flames, regimes of periodic motion involving quenching and re-ignition, regimes of regular oscillatory combustion, and regimes consisting of a combination of re-ignition/quenching events and regular oscillatory motions, all of which have been observed experimentally.  相似文献   
19.
Herein we report on an improved method for the microscale extraction of huperzine A (HupA), an acetylcholinesterase‐inhibiting alkaloid, from as little as 3 mg of tissue homogenate from the clubmoss Huperzia squarrosa (G. Forst.) Trevis with 99.95% recovery. We also validated a novel UHPLC‐QTOF‐MS method for the high‐throughput analysis of H. squarrosa extracts in only 6 min, which, in combination with the very low limit of detection (20 pg on column) and the wide linear range for quantification (20–10,000 pg on column), allow for a highly efficient screening of extracts containing varying amounts of HupA. Utilization of this methodology has the potential to conserve valuable plant resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
20.
Particularities of Heat Conduction in Nanostructures   总被引:4,自引:0,他引:4  
Heat conduction in nanostructures differs significantly from that in macrostructures because the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of nanostructures. In this communication, particularities associated with phonon heat conduction in nanostructures, the applicability of the Fourier law, and the implications of nanoscale heat transfer effects on nanotechnology are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号