首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   4篇
化学   28篇
晶体学   10篇
力学   2篇
物理学   11篇
  2022年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   7篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1986年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
11.
12.
Dimethyl ether (DME) is an important chemical material and gets more and more attention as a clean alternative fuel and refrigerant nowadays. The gas phase PVT properties of dimethyl ether were measured using the Burentt-isochoric coupling method in the temperature range of 328–403 K with two Burnett expansions at 383 and 403 K. A total of 126 experimental points have been obtained. The experimental measurement uncertainties were estimated to be within ±10 mK for temperature and ±0.7 kPa for pressure. The second virial coefficients along 16 isotherms were derived using the present data.  相似文献   
13.
采用数值模拟研究PVT法Φ150 mm 4H-SiC单晶生长的功率、频率选择、坩埚位置及保温厚度等关键生长参数.研究表明Φ150 mm 4H-SiC单晶生长功率是2inch 4H-SiC生长功率的2倍,优化的加热频率在5 kHz以下,系统分析不同生长参数下生长腔内径向及轴向温度梯度的变化规律.在此基础上初步的进行了Φ150 mm 4H-SiC单晶的生长工作,获得了无裂纹、直径完整的高质量SiC衬底材料.拉曼光谱Mapping测量显示Φ150 mm SiC衬底全片无多型,均为4H-SiC晶型.X光摇摆曲线显示半宽小于30 arcsec.采用掺杂过渡金属V杂质,获得了电阻率超过5×109 Ω·cm的150mmSiC衬底.  相似文献   
14.
The pressure‐volume‐temperature (PVT) dependencies of polyamide‐6 and its nanocomposites (polymeric nanocomposites) were measured at temperatures T = 300–600 K and pressures P = 0.1–190 MPa, thus spanning the range of molten and “solid” phases. The Simha‐Somcynsky (S‐S) cell‐hole equation of state (EOS) was used for describing the molten region. At Tg(P) ≤ TTm(P), the “solid” phase is a mixture of the liquid polyamide‐6 with dispersion of crystals. Accordingly, the PVT behavior in this region was described as a combination of the S‐S EOS for the liquid phase and the Midha‐Nanda‐Simha‐Jain (MNSJ) EOS for the crystalline one. These two theories based on different models yielded two sets of the characteristic reducing parameters, P*, T*, V* and the segmental molecular weight, Ms. Incorporation of 2 and 5 wt % clay increased P* and reduced T* and V*, but the effects were small. Fitting the combination of S‐S and MNSJ EOS' to isobaric “solid” phase data yielded the total crystallinity, Xcryst, and the correcting excess specific volume, ΔVm,c. Both parameters were sensitive to pressure, P, and the clay content, w—the former increased with P and w, whereas the latter decreased. The raw PVT data were numerically differentiated to obtain the thermal expansion and compressibility coefficients, α and κ, respectively. At T < Tm, addition of clay reduced their relative magnitude, whereas at T > Tm, the opposite effect was observed, most likely owing to the excess of intercalant in the polymeric nanocomposites samples. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 966–980, 2009  相似文献   
15.
The PVT properties of crosslinked polystyrene samples containing various amounts of dodecane were measured. The Tait equation was used to describe the PVT behavior of each system in both the glassy and rubbery regions. The glass transition temperature was determined from the abrupt change of the thermal expansion coefficient. Increase in the dodecane content in the samples resulted in a significant decrease of the difference between the expansion coefficients in the glassy and rubbery regions. Addition of dodecane lowered the glass transition temperature linearly. However, the dependence of the glass transition temperature on pressure was not affected by the presence of dodecane in the polymer samples. Above the glass transition temperature, the volume of the swollen polymer, Vm, could be determined by simple addition of the volumes of the pure components at the appropriate temperature and pressure; the volume change of mixing, δVm, was independent of temperature and pressure. Below the glass transition temperature, volume additivity of the two components was also applicable after appropriate adjustment of the glass transition temperature of the polymer to that of the dodecane/polymer samples. © 1994 John Wiley & Sons, Inc.  相似文献   
16.
利用PVT 10 0分析仪对 5种不同牌号的双向拉伸用聚丙烯 (BOPP)树脂的压力 体积 温度 (PVT)特性进行了测定 ,并利用Tait方程法得出BOPP熔体的热膨胀系数 (α)随温度和等温压缩系数 (β)随压力的变化关系 .研究结果表明 ,在相同条件下 ,牌号为S2 8C的BOPP熔体的热膨胀系数、等温压缩系数和结晶熔融温度分别低于其它牌号 ,因此 ,我们推断S2 8C在冷片形成过程中的体积形变较小 ,可避免由于收缩产生的模片表面缺陷 ,进而减少在后续双向拉伸过程中的破膜现象  相似文献   
17.
Using internationally recognized critical evaluations for the dielectric constant of water by Uematsu and Franck and the thermodynamic surface of water by Haar, Gallagher, and Kell, the Bureau of Mines presents values for the Pitzer-Debye-Hückel limiting slopes for osmotic coefficients, apparent molal enthalpies, apparent molal heat capacities, apparent molal volumes, molal compressibilities, and apparent molal expansivities from 0 to 350°C and from saturation to 1 kbar.  相似文献   
18.
19.
《Composite Interfaces》2013,20(5):345-353
The equation of state of a poly-ε-caprolactam melt, PA-6, of molar mass M n = 22 kg/mol was investigated in a Gnomix apparatus (Gnomix Inc., Boulder, Colorado) between 300 and 560 K, and pressures up to 150 MPa. Corresponding measurements were performed with addition of 1.6 wt% of montmorillonite exfoliated particles. Reductions in specific volume of about 1.0 and 1.4%, respectively, at 10 and 150 MPa, are observed. For the melt, excellent agreement between experiment and the results from lattice-hole theory is found for both systems. Addition of the nanoparticles reduced the hole (free volume) fraction by 14%. Evidently, the hole fraction is a sensitive indicator of structural changes. It is noteworthy that such a small quantity of added nanoparticles increases the tensile strength by about 14% and modulus by 26%, at a cost of reduction in the elongation at break by about 25%. For a treatment of the PNC, and as an approximation, our earlier model of a particulate composite was adopted. To calculate the binary interaction parameters it was assumed that: (1) the clay particles are in form of flat disks, 100 nm diameter and 1 nm thick; (2) the hard core segments of polymer and of solid occupy the same lattice volume, i.e. v * 11 = v * 22; (3) the energetic interactions of polymer with solid are given by the geometric average between the two self-interactions. These assumptions lead to the following results ('11' represents polymer-polymer, '22' represents clay-clay and '12' represents polymer-clay interactions): ε * 11= 32.09; ε * 12 = 313.54 and ε * 22 = 3063 (kJ/mol) v * 11 = 24.89; v * 12 = 33.53 andv * 22 = 24.89 (ml/mol)  相似文献   
20.
The aim of this report is to discuss the method of determination of lattice-fluid binary interaction parameters by comparing well characterized immiscible blends and block copolymers of poly(methyl methacrylate) (PMMA) and poly(??caprolactone) (PCL). Experimental pressure-volume-temperature (PVT) data in the liquid state were correlated with the Sanchez—Lacombe (SL) equation of state with the scaling parameters for mixtures and copolymers obtained through combination rules of the characteristic parameters for the pure homopolymers. The lattice-fluid binary parameters for energy and volume were higher than those of block copolymers implying that the copolymers were more compatible due to the chemical links between the blocks. Therefore, a common parameter cannot account for both homopolymer blend and block copolymer phase behaviors based on current theory. As we were able to adjust all data of the mixtures with a single set of lattice-binary parameters and all data of the block copolymers with another single set we can conclude that both parameters did not depend on the composition for this system. This characteristic, plus the fact that the additivity law of specific volumes can be suitably applied for this system, allowed us to model the behavior of the immiscible blend with the SL equation of state. In addition, a discussion on the relationship between lattice-fluid binary parameters and the Flory–Huggins interaction parameter obtained from Leibler's theory is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号