首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1174篇
  免费   145篇
  国内免费   94篇
化学   637篇
力学   55篇
综合类   13篇
数学   212篇
物理学   496篇
  2024年   1篇
  2023年   8篇
  2022年   11篇
  2021年   22篇
  2020年   25篇
  2019年   24篇
  2018年   29篇
  2017年   43篇
  2016年   56篇
  2015年   47篇
  2014年   70篇
  2013年   91篇
  2012年   85篇
  2011年   73篇
  2010年   80篇
  2009年   88篇
  2008年   89篇
  2007年   78篇
  2006年   84篇
  2005年   72篇
  2004年   73篇
  2003年   55篇
  2002年   46篇
  2001年   42篇
  2000年   29篇
  1999年   23篇
  1998年   12篇
  1997年   13篇
  1996年   8篇
  1995年   8篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1985年   3篇
  1982年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有1413条查询结果,搜索用时 15 毫秒
31.
Polyethylene (PE)‐based 3‐ and 4‐miktoarm star [PE(PCL)2, PE(PCL)3] and H‐type [(PCL)2PE(PCL)2] block copolymers [polycaprolactone (PCL)] were synthesized by a combination of polyhomologation, chlorosilane chemistry, and ring opening polymerization (ROP). The following steps were used for the synthesis of the miktoarm stars: (a) reaction of a hydroxy‐terminated polyethylene (PE‐OH), prepared by polyhomologation of dimethylsulfoxonium methylide with a monofunctional boron initiator followed by oxidation/hydrolysis, with chloromethyl(methyl)dimethoxysilane or chloromethyltrimethoxysilane; (b) hydrolysis of the produced ω‐di(tri)methoxysilyl‐polyethylenes to afford ω‐dihydroxy‐polyethylene (difunctional initiator) and ω‐trihydroxy‐polyethylene (trifunctional initiator); and (c) ROP of ɛ‐caprolactone with the difunctional (3‐miktoarm star) or trifunctional macroinitiator (4‐miktoarm star), in the presence of 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2λ5,4λ5‐catenadi(phosphazene) (t‐BuP2). The H‐type block copolymers were synthesized using the same strategy, but with a difunctional polyhomologation initiator. All intermediates and final products were characterized by HT‐GPC, 1H NMR and FTIR analyses. Thermal properties of the PE precursors and all final products were investigated by DSC and TGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2129–2136  相似文献   
32.
This work presents a two‐step, one‐pot process to make star polymers with polywedge arms. In a one‐pot reaction, after the polywedge arms are synthesized, crosslinker species are added to the reaction, rapidly forming star polymers. Crosslinker species with different degrees of conformational freedom were designed and synthesized and their capacity to generate star polymers was evaluated. Mass conversions up to 92% and stars with up to 17 arms were synthesized with the most rigid crosslinker. The effects of arm molecular weight and molar ratio of crosslinker to arm on mass conversion and arms per star were explored further. Finally, the size‐molecular weight scaling relationship for polywedges with linear and star architectures was compared, corroborating theoretical results regarding star polymers with arms much larger than their core. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 732–740  相似文献   
33.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
34.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
35.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
36.
Long‐subchain hyperbranched polystyrene (lsc‐hp PSt) with uniform subchain length was obtained through copper‐catalyzed azide‐alkyne cycloaddition click chemistry from seesaw macromonomer of PSt having one alkynyl group anchored at the chain centre and two azido group attached to both chain ends [alkynyl‐(PSt‐N3)2]. After precipitation fraction, different portions of lsc‐hp PSt having narrow overall molecular weight distribution were obtained for further grafting with alkynyl‐capped poly(N‐isopropylacrylamide) (alkynyl‐PNIPAM), which was obtained via single‐electron transfer living radical polymerization of NIPAM with propargyl 2‐bromoisobutyrate as the initiator and grafted onto the peripheral azido groups of lsc‐hp PSt via click chemistry. Thus, amphiphilic lsc‐hp PSt grafted with PNIPAM chains (lsc‐hp PSt‐g‐PNIPAM) was obtained and would have star‐like conformation in tetrahydrofuran (THF). By replacing THF with water, lsc‐hp PSt‐g‐PNIPAM was dissolved at molecular level in aqueous solution due to the hydrophilicity of PNIPAM and exhibited thermal induced shrinkage of PNIPAM arms. The water‐insoluble lsc‐hp PSt would collapse densely and could be served as a reservoir to absorb hydrophobic chemicals in aqueous solution. The influence of overall molecular weight of lsc‐hp PSt on the absorption of pyrene was studied. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
37.
38.
We provide a new class of interior solution of a(2+1)-dimensional anisotropic star in Finch and Skea spacetime corresponding to the BTZ black hole. We develop the model by considering the MIT bag model EOS and a particular ansatz for the metric function grrproposed by Finch and Skea [M.R. Finch and J.E.F. Skea, Class. Quantum.Grav. 6(1989) 467]. Our model is free from central singularity and satisfies all the physical requirements for the acceptability of the model.  相似文献   
39.
We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1663–1672  相似文献   
40.
A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Deng et al. and Bezegová et al. independently show that the star chromatic index of a tree with maximum degree Δ is at most ?3Δ2?, which is tight. In this paper, we study the list star edge coloring of k-degenerate graphs. Let chst(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound on the star chromatic index of trees also holds for list star chromatic index of trees, i.e. chst(T)?3Δ2? for any tree T with maximum degree Δ. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号