首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6178篇
  免费   1328篇
  国内免费   488篇
化学   3330篇
晶体学   16篇
力学   96篇
综合类   38篇
数学   269篇
物理学   4245篇
  2024年   26篇
  2023年   52篇
  2022年   251篇
  2021年   324篇
  2020年   370篇
  2019年   313篇
  2018年   258篇
  2017年   341篇
  2016年   396篇
  2015年   361篇
  2014年   618篇
  2013年   537篇
  2012年   489篇
  2011年   454篇
  2010年   357篇
  2009年   395篇
  2008年   388篇
  2007年   385篇
  2006年   257篇
  2005年   210篇
  2004年   150篇
  2003年   129篇
  2002年   125篇
  2001年   85篇
  2000年   114篇
  1999年   97篇
  1998年   81篇
  1997年   76篇
  1996年   59篇
  1995年   54篇
  1994年   39篇
  1993年   31篇
  1992年   32篇
  1991年   24篇
  1990年   26篇
  1989年   15篇
  1988年   12篇
  1987年   13篇
  1986年   3篇
  1985年   11篇
  1984年   12篇
  1983年   3篇
  1982年   9篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1975年   1篇
  1974年   3篇
排序方式: 共有7994条查询结果,搜索用时 296 毫秒
991.
在波长200~400 nm范围内,测定酪氨酸、色氨酸和苯丙氨酸混合体系的吸光度,用连续小波变换(CWT)对光谱数据进行预处理,再用支持向量回归(SVR)方法进行建模,建立了支持向量回归紫外分光光度法同时测定酪氨酸、色氨酸和苯丙氨酸的方法,用所建方法对模拟样品进行了测定。结果表明,酪氨酸、色氨酸和苯丙氨酸预测结果的回收率在98%~102%之间,测定结果准确。  相似文献   
992.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C+, 33S+ and 34S+ within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C+ as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.  相似文献   
993.
2-Acetyl-6-(dimethylamino)naphthalene-derived two-photon fluorescent Ca2+ probes (ACa1-ACa3) are reported. They can be excited by a 780 nm laser beam, show 23-50-fold enhancement in one- and two-photon excited fluorescence in response to Ca2+, emit fourfold stronger two-photon excited fluorescence than Oregon Green 488 BAPTA-1 upon complexation with Ca2+, and can selectively detect intracellular free Ca2+ ions in live cells and living tissues with minimum interference from other metal ions and membrane-bound probes. Moreover, these probes are capable of monitoring calcium waves at a depth of 120-170 microm in live tissues for 1100-4000 s using two-photon microscopy with no artifacts of photobleaching.  相似文献   
994.
Novel fluorescent, conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes have been prepared by introducing a naphthalenyl group at the meso position of the BODIPY core. These BODIPY dyes exhibit increased fluorescence quantum yields compared with dyes that have a meso-position phenyl group with internal rotation. The absorption and emission wavelengths of such conformationally restricted BODIPY dyes can be easily tuned to the near-IR range by derivatization through a condensation reaction with benzaldehyde derivatives. The two-photon absorption properties of these BODIPY dyes were also investigated and the results show that they exhibit increased two-photon excited fluorescence compared to analogue dyes that contain a phenyl group. The one- and two-photon fluorescence imaging of living cells by using selected BODIPY dyes has been successfully demonstrated.  相似文献   
995.
The idea of quality by design (QbD) has been proposed in pharmaceutical field. QbD is a systematic approach to control the product performance based on the scientific understanding of the product quality and its manufacturing process. In the present study, near-infrared (NIR) imaging is utilized as a tool to achieve this concept. A practical use of a chemometrics technique called self-modeling curve resolution (SMCR) is demonstrated with NIR imaging analysis of pharmaceutical tablets containing two ingredients, a soluble active ingredient, pentoxifylline (PTX), and an insoluble excipient, palmitic acid. Concentration profiles obtained by SMCR reveal that the homogenous distribution of chemical ingredients strongly depends on the grinding time and that its process plays a central role in quantitative control, say sustained-release of PTX. In addition, pure component spectra by SMCR indicate a sequential change of specific NIR peak intensities following the increase of the grinding time. The spectra change shows a molecular structure change related to its crystallinity during grinding process. Accordingly, this study clearly demonstrates that NIR imaging combined with SMCR can be a powerful tool to reveal chemical or physical mechanism induced by the manufacturing process of pharmaceutical products and that it may be a solid solution for QbD of pharmaceutical products.  相似文献   
996.
This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5–5.6 kDa) for MRI obtained from β-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure ( CD2 and CD3 ) and with pyrrolidine structure ( CD4 and CD5 ). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M−1 s−1) compared to CD2 (3.5 M−1 s−1) and CD3 (0.73 M−1 s−1). Relaxivity (r1) measurements on compounds CD3 - CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM−1 s−1 and 1.9 mM−1 s−1 were found while a significant reduction was observed at higher fields (r1≈0.6-0.9 mM−1 s−1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 μmol mL−1. MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3 - CD5 . The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.  相似文献   
997.
Room temperature phosphorescence (RTP) materials are characterized with emission after removing the excitation source. Such long-lived emission feature possesses great potential in biological fluorescence imaging because it enables a way regarding temporal dimension for separating the interference of autofluorescence and common noises typically encountered in conventional fluorescence imaging. Herein, we constructed a new type of mesoporous silica nanoparticles (MSNs)-based composite nanoparticles (NPs) with dual-color long-lived emission, namely millisecond-level green phosphorescence and sub-millisecond-level delayed red fluorescence by encapsulating a typical RTP dye and Rhodamine dye in the cavities of the MSNs with the former acting as energy donor (D) while the latter as acceptor (A). Benefiting from the close D-A proximity, energy match between the donor and the acceptor and the optimized D/A ratio in the composite NPs, efficient triplet-to-singlet Förster resonance energy transfer (TS-FRET) in the NPs occurred upon exciting the donor, which enabled dual-color long-lived emission. The preliminary results of dual-color correlation imaging of live cells based on such emission feature unequivocally verified the unique ability of such NPs for distinguishing the false positive generated by common emitters with single-color emission feature.  相似文献   
998.
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.  相似文献   
999.
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed “fluorine effect”. The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.  相似文献   
1000.
设计合成了新型含有荧光基团的α-氰基丙烯酸酯单体,并与其它α-氰基丙烯酸酯单体共聚,得到产生荧光的聚氰基丙烯酸酯材料.将其包埋在小鼠背部肌肉层,可获得良好的荧光成像效果.通过对荧光强度的监测,初步研究了聚氰基丙烯酸酯材料中的侧链酯基在小鼠体内的降解情况.单体合成是以蒽合氰基丙烯酸和4,4'-二甲氧基三苯基-氨基己醇为原料,得到蒽合氰基丙烯酸(4,4'-二甲氧基三苯基-氨基己醇)酯,脱保护后再将异硫氰酸荧光素以化学键合的方式标记在末端氨基上,脱蒽还原烯双键后,得到可用于荧光标记的α-氰基丙烯酸(异硫氰酸荧光素-氨基己醇)酯单体.反应中间体及单体结构采用核磁共振氢谱和质谱进行表征.该单体及其高聚物均可在激发光(488 nm)和发射光(525 nm)条件下观察到明显荧光.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号