首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   98篇
  国内免费   10篇
化学   17篇
晶体学   2篇
力学   443篇
综合类   5篇
数学   139篇
物理学   100篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   14篇
  2019年   12篇
  2018年   16篇
  2017年   16篇
  2016年   18篇
  2015年   17篇
  2014年   15篇
  2013年   49篇
  2012年   27篇
  2011年   40篇
  2010年   20篇
  2009年   35篇
  2008年   29篇
  2007年   32篇
  2006年   32篇
  2005年   26篇
  2004年   37篇
  2003年   28篇
  2002年   22篇
  2001年   30篇
  2000年   23篇
  1999年   18篇
  1998年   17篇
  1997年   25篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   15篇
  1991年   13篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有706条查询结果,搜索用时 109 毫秒
701.
The objective of this paper is to present a methodology of using a two‐step split‐operator approach for solving the shallow water flow equations in terms of an orthogonal curvilinear co‐ordinate system. This approach is in fact one kind of the so‐called fractional step method that has been popularly used for computations of dynamic flow. By following that the momentum equations are decomposed into two portions, the computation procedure involves two steps. The first step (dispersion step) is to compute the provisional velocity in the momentum equation without the pressure gradient. The second step (propagation step) is to correct the provisional velocity by considering a divergence‐free velocity field, including the effect of the pressure gradient. This newly proposed method, other than the conventional split‐operator methods, such as the projection method, considers the effects of pressure gradient and bed friction in the second step. The advantage of this treatment is that it increases flexibility, efficiency and applicability of numerical simulation for various hydraulic problems. Four cases, including back‐water flow, reverse flow, circular basin flow and unsteady flow, have been demonstrated to show the accuracy and practical application of the method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
702.
Scattering of a conduction electron by a charged shallow donor located near a semiconductor–insulator interface in the semiconductor or by a charged center embedded in the insulator is considered within the model of a hydrogenlike atom in a semi-infinite space. The interface influence is allowed for by spatial confinement of the electron envelope wave function. The impurity electrostatic image at the interface is taken into account. The problem is separable in prolate spheroidal coordinates and thus is solvable exactly. A rapidly convergent expansion is proposed for the angular eigenfunctions. The radial eigenfunctions are calculated directly by numerical integration of the radial boundary value problem. Expansions of the scattering wave function and the scattering amplitude in terms of the eigenfunctions of the problem are obtained. Using the extended and localized state wave functions, the photoionization cross section of a shallow donor near a semiconductor–insulator interface is calculated. It is presented as a superposition of the oscillator strengths of transitions to the partial extended eigenstates that constitute the scattering wave function. Near the interface, the cross section is enhanced significantly and redistributed over the direction of photoionized electron escape. The photoionization threshold follows the localized state energy varying with the donor–interface distance. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 435–456, 1998  相似文献   
703.
With the exponential increase in computing power, modelers of coastal and oceanic regions are capable of simulating larger domains with increased resolution. Typically, these models use graded meshes wherein the size of the elements can vary by orders of magnitude. However, with notably few exceptions, the graded meshes are generated using criteria that neither optimize placement of the node points nor properly incorporate the physics, as represented by discrete equations, underlying tidal flow and circulation to the mesh generation process. Consequently, the user of the model must heuristically adjust such meshes based on knowledge of local flow and topographical features—a rough and time consuming proposition at best. Herein, a localized truncation error analysis (LTEA) is proposed as a means to efficiently generate meshes that incorporate estimates of flow variables and their derivatives. In a one‐dimensional (1D) setting, three different LTEA‐based finite element grid generation methodologies are examined and compared with two common algorithms: the wavelength to Δx ratio criterion and the topographical length scale criterion. Errors are compared on a per node basis. It is shown that solutions based on LTEA meshes are, in general, more accurate (both locally and globally) and more efficient. In addition, the study shows that the first four terms of the ordered truncation error series are in direct competition and, subsequently, that the leading order term of the truncation error series is not necessarily the dominant term. Analyses and results from this 1D study lay the groundwork for developing an efficient mesh generating algorithm suitable for two‐dimensional (2D) models. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
704.
A sedimentary record of the 16 polycyclic aromatic hydrocarbon (PAH) pollutants from Dongping Lake, north China, is presented in this study. The influence of regional energy structure changes for 2–6-ring PAHs was investigated, in order to assess their sources and the impact of socioeconomic developments on the observed changes in concentration over time. The concentration of the ΣPAH16 ranged from 77.6 to 628.0 ng/g. Prior to the 1970s, the relatively low concentration of ΣPAH16 and the average presence of 44.4% 2,3-ring PAHs indicated that pyrogenic combustion from grass, wood, and coal was the main source of PAHs. The rapid increase in the concentration of 2,3-ring PAHs between the 1970s and 2006 was attributed to the growth of the urban population and the coal consumption, following the implementation of the Reform and Open Policy in 1978. The source apportionment, which was assessed using a positive matrix factorization model, revealed that coal combustion was the most important regional source of PAHs pollution (>51.0%). The PAHs were mainly transported to the site from the surrounding regions by atmospheric deposition rather than direct discharge.  相似文献   
705.
Shallow‐water flow with free surface frequently occurs in ambient water bodies, in which the horizontal scale of motion is generally two orders of magnitude greater than the water depth. To accurately predict this flow phenomenon in more detail, a three‐dimensional numerical model incorporating the method of large eddy simulation (LES) has been developed and assessed. The governing equations are split into three parts in the finite difference solution: advection, dispersion and propagation. The advection part is solved by the QUICKEST scheme. The dispersion part is solved by the central difference method and the propagation part is solved implicitly using the Gauss–Seidel iteration method. The model has been applied to free surface channel flow for which ample experimental data are available for verification. The inflow boundary condition for turbulence is generated by a spectral line processor. The computed results compare favourably with the experimental data and those results obtained by using a periodic boundary condition. The performance of the model is also assessed for the case in which anisotropic grids and filters with horizontal grid size of the order of the water depth are used for computational efficiency. The coarse horizontal grid was found to cause a significant reduction in the large‐scale turbulent motion generated by the bottom turbulence, and the turbulent motion is predominately described by the sub‐grid scale (SGS) terms. The use of the Smagorinsky model for SGS turbulence in this situation is found inappropriate. A parabolic mixing length model, which accounts for the filtered turbulence, is then proposed. The new model can reproduce more accurately the flow quantities. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
706.
研究了功能梯度材料扁薄锥壳在横向非均匀升温场中的几何非线性大变形问题.基于von Kármán几何非线性理论推导出了以中面位移为基本未知量的功能梯度扁薄锥壳在横向非均匀热载荷作用下的轴对称大挠度控制方程.采用打靶法数值求解所得非线性常微分方程边值问题,得到了锥壳的大挠度弯曲变形数值解.给出了锥壳的变形与其形状参数、载荷和材料参数等变化的特征关系曲线,分析和讨论了温度参数和材料梯度变化参数对变形的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号