首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   11篇
  国内免费   11篇
化学   73篇
晶体学   2篇
数学   2篇
物理学   39篇
  2024年   1篇
  2023年   1篇
  2021年   9篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   15篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1985年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
61.
The current study was designed to find out how olive maturity indices (2.5, 3.5, and 4.5) affect the individual phenolic compounds and antioxidant potencies of olive oils produced from cv. Nizip Yaglik olives. Liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry in multiple reaction monitoring mode was utilized for the determination of phenolic composition qualitatively and quantitatively. Findings asserted a quite similar phenolic profile (14 phenols) depending on the various phenolic groups in all oils, while the concentration of total and individual phenolic compounds revealed significant differences between the samples statistically (p < 0.05). Among the individual phenolic classes in all samples, secoiridoids were the most prevailing group and their total content showed a clear significant decline as the olive fruits get ripened. Antioxidant potency values showed a clear diminution attitude during the maturation of the olives. The principal component analysis revealed that oils were discriminated from each other according to phenolic compounds and antioxidant potencies. Moreover, oils obtained from the unripe and medium‐ripe fruits possessed a very good quality marked by their elevated phenolic levels.  相似文献   
62.
63.
The long-time regime coarsening in a phase-segregated blend of hydrogenated polybutadiene (HPB) with high-density polyethylene (HDPE) was studied. The blend consisted of 10 wt% of HPB in a HDPE matrix. The morphology of the system was studied by etching the HPB particles from the HDPE matrix and observing the etched specimens in a scanning electron microscope. The average volume of the HPB particles was found to increase with storage time in the melt, and to follow a temporal exponent of 1 in agreement with the predictions of the Ostwald ripening theory. This indicated that the particles coarsen by the evaporation-condensation mechanism on which the Ostwald ripening theory is based. The rate constant from the Ostwald ripening theory was calculated and compared to the rate constant determined from the experimental data. The theoretical rate constant, K, calculated from Ostwald ripening theory, was 3.6 × 10?18 cm3/s compared to an experimentally determined rate constant of 4.8 × 10?18 cm3/s. The agreement between the theoretical and experimental rate constants was quite good. The significance attached to the good agreement between the theoretical and experimental rate constants might be mollified to some extent by the uncertainty involved in the parameters used to calculate the theoretical rate constant; viz. the interfacial tension, mutual-diffusion coefficient, and equilibrium concentration of the HPB in the matrix phase that are not known to high accuracy. In reality, because other theories were used to determine the interfacial tension, mutual-diffusion coefficient, and equilibrium phase compositions, this study was a test of several theories simultaneously. However, the agreement of the experimental temporal exponent and rate constant with the predictions of Ostwald ripening theory strongly indicates that the HPB/HDPE system coarsens by the evaporation-condensation mechanism upon which the Ostwald ripening theory is based. © 1994 John Wiley & Sons, Inc.  相似文献   
64.
The use of organic nanomaterials in biomedical and optical devices has been widely studied. The key to improving the performance and stability of these devices is to control the fabrication process, which determines the phase stability and photophysical properties. In this study, fluorescence changes were observed during the reprecipitation process of mechanofluorochromic molecules of dibenzoyl(methanato)boron difluoride. The cyan-emission phase (C-phase) was first identified. The time evolution of the resolved fluorescence spectra revealed that the green-emission phase (G-phase) was formed from the amorphous phase with yellow emission via the C-phase, in addition to the direct formation of the G-phase. Combined with the results of the investigation into the thermal properties, the fluorescence changes clearly indicate a two-step nucleation process and Ostwald's rule of stages for polymorph transition, which enables us to not only provide guidance for controlling the fabrication process but also propose the ripening process for organic nanoparticle formation.  相似文献   
65.
Oregano essential oil emulsions (W/O) were prepared using different emulsifiers’ blend concentrations of Tween 80/Span 20, to study their phase separation during storage and to optimize the homogenization processing parameters by minimizing the droplet size of emulsions. Phase separation followed a second-order kinetic model, and relationships between the kinetic parameters and the blend concentrations of emulsifiers were established for determining the best emulsion formulations. The instability mechanism of emulsions demonstrated to be Ostwald ripening; therefore, by means of surface response methodology, mechanical homogenization parameters (11,700?rpm for 12 minutes at 1°C) were specified in order to minimize the droplet size of emulsions (1.02?±?0.12?µm).  相似文献   
66.
Despite significant advancement in preparing various hollow structures by Ostwald ripening, one common problem is the intractable uncontrollability of initiating Ostwald ripening due to the complexity of the reaction processes. Here, a new strategy on Hansen solubility parameter (HSP)‐guided solvent selection to initiate Ostwald ripening is proposed. Based on this comprehensive principle for solvent optimization, N,N‐dimethylformamide (DMF) was screened out, achieving accurate synthesis of interior space‐tunable MoSe2 spherical structures (solid, core–shell, yolk‐shell and hollow spheres). The resultant MoSe2 structures exhibit architecture‐dependent electrochemical performances towards hydrogen evolution reaction and sodium‐ion batteries. This pre‐solvent selection strategy can effectively provide researchers great possibility in efficiently synthesizing various hollow structures. This work paves a new pathway for deeply understanding Ostwald ripening.  相似文献   
67.
利用液滴外延法在GaAs(001)衬底表面制备InAs量子点,通过控制变量分别研究沉积速率、沉积量对In液滴在GaAs表面生长过程中的影响.使用原子力显微镜(Atomic Force Microscope, AFM)表征InAs纳米结构形貌,得出结论:(1)沉积速率主要通过影响In液滴成核率来控制液滴的密度,即随着沉积速率的增大,In原子在衬底表面的成核率增加,InAs量子点密度增加,实验符合生长动力学经典成核理论.(2)沉积量的改变主要影响液滴的熟化过程,即随着沉积量的增大,可参与生长的活跃的In原子增加,促进了液滴熟化,使得扩散坍塌的原子数量增加,导致在InAs纳米结构中出现多量子点现象.  相似文献   
68.
Oil-in-water nanoemulsions are finding increasing use as delivery systems to encapsulate lipophilic bioactive components in personal care and pharmaceutical. The aim of this study was to optimize the composition and stability of ceramide-2 nanoemulsions. The nanoemulsions were prepared by high pressure homogenizer emulsification method using sodium dilauramidoglutamide lysine (DLGL) as surfactant. Results showed that the oil type and concentration had an appreciable impact on the particle size and stability of the ceramide-2 enriched nanoemulsions. The presence of the aliphatic alcohol altered the curvature of the surfactant molecular and increased the stability of nanoemulsions. The zeta potential of nanoemulsions decreased with the addition of cetyl trimethyl ammonium chloride (1631), which weakens the electrostatic interactions between droplets and lowers the stability of the nanoemulsions. The particle size decreased with increasing concentrations of both sodium dodecyl sulfate (SDS) and cocoamidopropyl betaine (CAB). The variation of zeta potential with SDS and CAB was insignificant, which was attributed to the high zeta potential value resulted from anionic gemini surfactant DLGL. The instability mechanism of nanoemulsions was the Ostwald ripening. This study demonstrated that the addition of aliphatic alcohol, SDS, or CAB was beneficial to the stability of ceramide-2 nanoemulsions and decreased the Ostwald ripening rate.  相似文献   
69.
This paper explores the evolution of a sharp interface model for phase separation of copolymers in the limit of low volume fraction. Particles both exchange material as in usual Ostwald ripening, and migrate because of an effectively repulsive nonlocal energetic term. Coarsening via mass diffusion only occurs while particle radii are small, and they eventually approach a finite equilibrium size. Migration, on the other hand, is responsible for producing self-organized patterns.We construct approximations based upon an ansatz of spherical particles similar to the classical LSW theory to derive finite dimensional dynamics for particle positions and radii. For large systems, kinetic-type equations which describe the evolution of a probability density are constructed. For systems larger than the screening length, we obtain an analog of the homogenization result of Niethammer & Otto [B. Niethammer, F. Otto, Ostwald ripening: The screening length revisited, Calc. Var. Partial Differential Equations 13-1 (2001) 33-68]. A separation of timescales between particle growth and migration allows for a variational characterization of spatially inhomogeneous quasi-equilibrium states.  相似文献   
70.
d-limonene in water nanoemulsion was prepared by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether. Investigation using response surface methodology revealed that 10% d-limonene nanoemulsions formed at S0 ratio (d-limonene concentration to mixed surfactant concentration) 0.6-0.7 and applied power 18 W for 120 s had droplet size below 100 nm. The zeta potential of the nanoemulsion was approximately −20 mV at original pH 6.4, closed to zero around pH 4.0, and around −30 mV at pH 12.0. The main destabilization mechanism of the systems is Ostwald ripening. The ripening rate at 25 °C (0.39 m3 s−1 × 1029) was lower than that at 4 °C (1.44 m3 s−1 × 1029), which was in agreement with the Lifshitz-Slezov-Wagner (LSW) theory. Despite of Ostwald ripening, the droplet size of d-limonene nanoemulsion remained stable after 8 weeks of storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号