首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1808篇
  免费   205篇
  国内免费   98篇
化学   1891篇
晶体学   2篇
力学   86篇
综合类   6篇
数学   19篇
物理学   107篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   29篇
  2019年   46篇
  2018年   39篇
  2017年   50篇
  2016年   71篇
  2015年   80篇
  2014年   123篇
  2013年   159篇
  2012年   107篇
  2011年   131篇
  2010年   113篇
  2009年   126篇
  2008年   118篇
  2007年   123篇
  2006年   134篇
  2005年   107篇
  2004年   115篇
  2003年   77篇
  2002年   105篇
  2001年   38篇
  2000年   46篇
  1999年   30篇
  1998年   15篇
  1997年   29篇
  1996年   6篇
  1995年   10篇
  1994年   9篇
  1993年   9篇
  1992年   7篇
  1991年   1篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1968年   1篇
排序方式: 共有2111条查询结果,搜索用时 78 毫秒
11.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL), initiated by carboxylic acids such as benzoic acid and chlorinated acetic acids under microwave irradiation, was investigated; with this method, no metal catalyst was necessary. The product was characterized as poly(ε‐caprolactone) (PCL) by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, and gel permeation chromatography. The polymerization was significantly improved under microwave irradiation. The weight‐average molecular weight (Mw) of PCL reached 44,800 g/mol, with a polydispersity index [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] of 1.6, when a mixture of ε‐CL and benzoic acid (25/1 molar ratio) was irradiated at 680 W for 240 min, whereas PCL with Mw = 12,100 and Mw/Mn = 4.2 was obtained from the same mixture by a conventional heating method at 210 °C for 240 min. A degradation of the resultant PCL was observed during microwave polymerization with chlorinated acetic acids as initiators, and this induced a decrease in Mw of PCL. However, the degradation was hindered by benzoic acid at low concentrations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 13–21, 2003  相似文献   
12.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   
13.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   
14.
Natural human hair was successfully modified by the graft polymerization of trimethylene carbonate, β‐propiolactone, ε‐caprolactone, glycidol, ε‐caprolactam, and 5,5‐dimethyl‐1,3‐dioxane‐2‐thione. In contrast, we could not modify natural human hair by the graft polymerization of oxetane under similar conditions. The model reaction suggested that the main initiating species in these polymerizations were the amino, thiol, and hydroxyl groups in hair, which could induce ring‐opening polymerization. Among the tested monomers, β‐propiolactone was most effective for hair modification with its graft polymer, whose concentration was as high as 0.5 g/g of hair though polymerization under mild conditions. The effects of the hair pretreatment and polymerization temperature on the weight ratio of the grafted polymers were also investigated. Hair modified by grafted polymers was characterized with scanning electron microscopy and Fourier transform infrared measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 736–744, 2007  相似文献   
15.
The ring‐opening copolymerization of a glycidyl ester derivative having a benzophenone group and the donor–acceptor norbornadiene (D‐A NBD) dicarboxylic acid, 5‐(4‐methoxyphenyl)‐1,4,6,7,7‐pentamethyl‐2,5‐norbornadiene‐2,3‐dicarboxylic acid, monoglycidyl ester derivatives with D‐A NBD dicarboxylic anhydride using tetraphenylphosphonium bromide as a catalyst proceeded smoothly to give novel self‐photosensitizing NBD polymers in good yields. The molecular weight of these polyesters was about 4,000, and lower than that of analogous NBD polymers having no benzophenone group. All the synthesized NBD polymers isomerized smoothly to the corresponding quadricyclane (QC) polymers upon UV irradiation in tetrahydrofuran (THF) solution and in the film state. The rate of the photoisomerization of the D‐A NBD moieties in these polymers was higher than that of the D‐A NBD moieties in the polymer having no photosensitizing group. Furthermore, the rate of the photoisomerization of the D‐A NBD moieties in these polymers was also higher than that of the NBD polymer with low molecular weight photosensitizer in dilute solution. The photo‐irradiated polymers having QC moieties released thermal energies of 146–180 J/g. The D‐A NBD moieties contained in these NBD polymers possessed fair to good fatigue resistance. The degradation of the NBD moieties in these polymers was 15–30% after 50 repeated cycles of interconversion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2978–2988, 2007  相似文献   
16.
Methacrylate‐functionalized poly(ethylene oxide‐co‐ethylene carbonate) macromonomers were prepared in two steps by the anionic ring‐opening polymerization of ethylene carbonate at 180 °C, with potassium methoxide as the initiator, followed by the reaction of the terminal hydroxyl groups of the polymers with methacryloyl chloride. The molecular weight of the polymer went through a maximum after approximately 45 min of polymerization, and the content of ethylene carbonate units in the polymer decreased with the reaction time. A polymer having a number‐average molecular weight of 2650 g mol?1 and an ethylene carbonate content of 28 mol % was selected and used to prepare a macromonomer, which was subsequently polymerized by UV irradiation in the presence of different concentrations of lithium bis(trifluoromethanesulfonyl)imide salt. The resulting self‐supportive crosslinked polymer electrolyte membranes reached ionic conductivities of 6.3 × 10?6 S cm?1 at 20 °C. The coordination of the lithium ions by both the ether and carbonate oxygens in the polymer structure was indicated by Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2195–2205, 2006  相似文献   
17.
A spiro orthoester with an exomethylene group (exoSOE) was radically copolymerized with acrylonitrile or vinyl acetate at several feed ratios to obtain the corresponding copolymers having spiro orthoester moieties in the side chain. The obtained copolymers could be crosslinked via the double ring‐opening polymerization of the spiro orthoester moieties in their side chain by a treatment with BF3OEt2. The volume changes upon the crosslinking of the copolymers were evaluated by density measurements with a micromeritics gas pycnometer. The copolymers experienced less than 1% volume expansion instead of volume shrinkage during typical cationic crosslinking, regardless of the copolymer compositions. Negligible shrinkage was observed during the thermal cationic crosslinking of a film cast from a nitrobenzene solution of the copolymers containing a benzylthiophenium salt as a thermally latent cationic initiator. The constantly low volume changes during the crosslinking of the copolymers from exoSOE probably depended on the almost zero volume change during the cationic polymerizations of spiro orthoester derivatives. This indicates that exoSOE is an effective monomer for crosslinkable polymers without volume changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3666–3673, 2006  相似文献   
18.
Natural human hair was modified by the graft polymerization of propylene sulfide in an aqueous medium. The amount of the polymer grafted onto the reduced hair was 0.15–0.19 g on 1.0 g of hair. The grafted polymer was isolated by the hydrolysis of the hair in the polymer‐grafted hair under basic conditions and was confirmed to be poly(propylene sulfide) by 1H NMR, 13C NMR, and Fourier transform infrared spectra. The number‐average molecular weights of the isolated polymers from the grafted products were 10,000–12,000. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3778–3786, 2006  相似文献   
19.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
20.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号