首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2777篇
  免费   659篇
  国内免费   84篇
化学   3033篇
晶体学   45篇
力学   3篇
综合类   2篇
数学   2篇
物理学   435篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   58篇
  2020年   144篇
  2019年   112篇
  2018年   66篇
  2017年   76篇
  2016年   183篇
  2015年   211篇
  2014年   231篇
  2013年   258篇
  2012年   248篇
  2011年   217篇
  2010年   250篇
  2009年   239篇
  2008年   244篇
  2007年   221篇
  2006年   214篇
  2005年   165篇
  2004年   158篇
  2003年   122篇
  2002年   16篇
  2001年   20篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   20篇
  1996年   5篇
  1995年   2篇
  1990年   2篇
  1985年   1篇
排序方式: 共有3520条查询结果,搜索用时 331 毫秒
81.
A design of novel hydrophilic tetracationic dumbbell-shaped [60]fullerene nanostructures was made by balancing the hydrophilicity and hydrophobicity characteristics of the fullerene adduct for their potential application as photodynamic sensitizers in the PDT treatment. A sequential protection-deprotection reaction pathway was applied for the functional differentiation between primary and secondary amine moieties of pentaethylene hexamine. Synthesis of the target molecule involves two key steps of unsymmetrical esterification and amidation of malonic acid and subsequent fullerenation. The synthetic strategy was accomplished using mild reaction conditions in the intermediate molecule preparation and led a moderate overall product yield.  相似文献   
82.
83.
84.
In this paper we report the growth of 1-D and 3-D tungsten-oxide nanostructures on tungsten wire probes inserted in an opposed-flow oxy-fuel flame. The probe diameter and oxygen content in the oxidizer were varied to study their influence on the growth of tungsten-oxide nanostructures. The introduction of a 1-mm diameter W probe into the flame environment with an oxidizer composition of 50%O2 + 50%N2, resulted in the formation of 1-D nanorods on the upper surface of the probe. The formation of triangular, rectangular, square, and cylindrical 3-D channels with completely hollow or semi-hollow morphology was achieved by reducing the probe diameter to 0.5 mm. Whereas, the increase of the O2 content to 100% and the employment of a 1-mm probe resulted in the growth of ribbon-like micron-sized structures. The lattice spacing of ∼0.38 nm measured for the 1-D W-oxides closely matches a monoclinic WO3 structure. X-ray photoelectron spectroscopy analysis revealed that the larger 3-D structures also consist of WO3 confirming that the chemical composition of the structures remains the same while varying the probe and flame parameters. The proposed growth mechanism states that the 3-D WO3 structures are formed through the lateral coalescence of 1-D W-oxide nanorods.  相似文献   
85.
A new polymer blend composed of a hydrogenated ring‐opening polymer (HROP) with an ester group and hydroxyl functionalized polystyrene (HFP) produced the excellent transparent materials which enabled a precise birefringence control in keeping with the other physical properties for optical film use. The blend with a composition from 0.28 to 0.35 for the HFP weight fraction showed an extraordinary wavelength dispersion, transmitting through a zero birefringence point at the critical fraction of 0.45, while each polymer showed an ordinary wavelength dispersion. The observed excellent transparency even above those of the glass transition temperature was attributed to a depressed phase separation that resulted from strong hydrogen bond between the ester and hydroxyl groups. An IR analysis of the film demonstrated a remarkable red‐shift in the carbonyl peak with an increase of the hydroxylated polystyrene content, indicating a strong hydrogen bond between those groups. This new polymer blend provides a useful design to achieve practical demands for film use, both optical and mechanical under the fabrication conditions using the melt extrusion technique. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3132–3143  相似文献   
86.
The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature induced surface energy and its consequential stress state is investigated and found to be rather negligible. Furthermore, it is shown that the nonlinear character of the van der Waals interactions has to be considered to obtain maximum layer numbers comparable to experimental observations. The proposed model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions.  相似文献   
87.
Shortly after processing, Polyethylene/Polypropylene (PE/PP) multilayer films demonstrate an increase in tensile modulus and other mechanical properties when the individual layer thickness is below 0.5 µm. Subsequent annealing at 60 °C for 16 h brings the properties of all other samples to similar values. WAXD characterization of the layered films identified a prevalence of mesophase in the thicker PP layers. In samples with increased layer numerosity or subjected to annealing, WAXD detected its conversion to α crystalline phase that correlates with improved mechanical properties. SSNMR and DSC detailed the defective nature of α iPP crystallites. Comonomers, detected by NMR in the commercial polymers used for the films, are the source of “tunable disorder” that dictates the formation of the PP mesophase and the low temperature of conversion to the mechanically stronger defective α phase. Soft intrafilm layer interfaces instead enable nucleation and localized polymer chain rearrangement even without annealing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 520–531  相似文献   
88.
Manganese-based nanostructured contrast agents (CAs) entered the field of medical diagnosis through magnetic resonance imaging (MRI) some years ago. Although some of these Mn-based CAs behave as classic T1 contrast enhancers in the same way as clinical Gd-based molecules do, a new type of Mn nanomaterials have been developed to improve MRI sensitivity and potentially gather new functional information from tissues by using traditional T1 contrast enhanced MRI. These nanomaterials have been designed to respond to biological environments, mainly to pH and redox potential variations. In many cases, the differences in signal generation in these responsive Mn-based nanostructures come from intrinsic changes in the magnetic properties of Mn cations depending on their oxidation state. In other cases, no changes in the nature of Mn take place, but rather the nanomaterial as a whole responds to the change in the environment through different mechanisms, including changes in integrity and hydration state. This review focusses on the chemistry and MR performance of these responsive Mn-based nanomaterials.  相似文献   
89.
A composite of FeOOH nanocubes anchored on carbon ribbons has been synthesized and used as a cathode material for Li/O2 batteries. Fe2+ ion-exchanged resin serves as a precursor for both FeOOH nanocubes and carbon ribbons, which are formed simultaneously. The as-prepared FeOOH cubes are proposed to have a core–shell structure, with FeOOH as the shell and Prussian blue as the core, based on information from XPS, TEM, and EDS mapping. As a cathode material for Li/O2 batteries, FeOOH delivers a specific capacity of 14816 mA h g−1cathode with a cycling stability of 67 cycles over 400 h. The high performance is related to the low overpotential of the oxygen reduction/evolution reaction on FeOOH. The cube structure, the supporting carbon ribbons, and the -OOH moieties all contribute to the low overpotential. The discharge product Li2O2 can be efficiently decomposed in the FeOOH cathode after a charging process, leading to higher cycling stability. Its high activity and stability make FeOOH a good candidate for use in non-aqueous Li/O2 batteries.  相似文献   
90.
Molybdenum disulfide (MoS2) is an intensively studied anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity, but it is still confronted by severe challenges of unsatisfactory rate capability and cycle life. Herein, few-layer MoS2 nanosheets, vertically grown on hierarchical carbon nanocages (hCNC) by a facile hydrothermal method, introduce pseudocapacitive lithium storage owing to the highly exposed MoS2 basal planes, enhanced conductivity, and facilitated electrolyte access arising from good hybridization with hCNC. Thus, the optimized MoS2/hCNC exhibits reversible capacities of 1670 mAh g−1 at 0.1 A g−1 after 50 cycles, 621 mAh g−1 at 5.0 A g−1 after 500 cycles, and 196 mAh g−1 at 50 A g−1 after 2500 cycles, which are among the best for MoS2-based anode materials. The specific power and specific energy, which can reach 16.1 kW and 252.8 Wh after 3000 cycles, respectively, indicate great potential in high-power and long-life LIBs. These findings suggest a promising strategy for exploring advanced anode materials with high reversible capacity, high-rate capability, and long-term recyclability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号