首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   129篇
  国内免费   140篇
化学   506篇
晶体学   25篇
力学   173篇
综合类   7篇
数学   17篇
物理学   435篇
  2024年   1篇
  2023年   2篇
  2022年   29篇
  2021年   26篇
  2020年   32篇
  2019年   29篇
  2018年   36篇
  2017年   46篇
  2016年   69篇
  2015年   60篇
  2014年   44篇
  2013年   78篇
  2012年   67篇
  2011年   58篇
  2010年   44篇
  2009年   68篇
  2008年   41篇
  2007年   60篇
  2006年   48篇
  2005年   34篇
  2004年   48篇
  2003年   30篇
  2002年   33篇
  2001年   43篇
  2000年   21篇
  1999年   22篇
  1998年   18篇
  1997年   20篇
  1996年   13篇
  1995年   9篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有1163条查询结果,搜索用时 31 毫秒
21.
A selection of suitable microstructures is critical to fabrication and properties of superhydrophobic surfaces (SHS). In this study, we introduce a three‐dimensional droplet model to thermodynamically analyze the superhydrophobic properties for the purpose of determining the second step of a two‐step microstructure suitable for the SHS based on the common models within the reach of the existing macro‐machining technology. It is found that a sinusoidal microstructure is the most suitable, followed by a cone frustum and a prism in the composite wetting state, as well as the transition from hydrophilic to hydrophobic depends basically on the solid fraction rather than non‐determinative surface microscopic topography. The predictions of the model are found in quite good agreement with the experimental observations. This study will facilitate fabrication of the SHS on how to select the suitable morphology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
22.
Structural evolution of gel‐spun ultra‐high molecular weight polyethylene fibers with high concentration solution via hot stretching process was investigated by in situ small‐angle X‐ray scattering, in situ wide‐angle X‐ray diffraction measurements, scanning electron microscopy, and differential scanning calorimetry. With the increase of stretching strain, the long period continuously increases at relative lower stretching temperature, while it first increases and then decreases rapidly at relative higher stretching temperature. The kebab thickness almost keeps constant during the whole hot‐stretching process and the kebab diameter continually decreases for all stretching temperatures. Moreover, the length of shish decreases slightly and the shish quantity increases although there is almost no change in the diameter of shish crystals during the hot stretching process. The degree of crystal orientation at different temperatures is as high as above 0.9 during the whole stretching process. These results indicate that the shish‐kebab crystals in ultra‐high molecular weight polyethylene fibers can transform continuously into the micro‐fibril structure composed mostly of shish crystals through the hot stretching process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 225–238  相似文献   
23.
Molecule‐based micro‐/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro‐sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro‐/nanomaterials. Unlike single‐component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro‐/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro‐/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low‐dimensional multicomponent micro‐/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro‐/nanomaterials.  相似文献   
24.
Manganese‐ and cerium oxide‐modified titania catalysts were prepared by the deposition precipitation for the removal of elemental mercury (Hg0) from simulated yellow phosphorus off‐gas at low temperature. In addition, these catalysts were characterized by X‐ray diffraction, Brunauer–Emmett–Teller measurements, X‐ray photoelectron spectroscopy and field‐emission scanning electron microscope to determine the surface morphology of the obtained compounds and explore their formation mechanism. The results revealed that a Mn–Ce loading and reaction temperature of 10% and 150 °C, respectively, as well as a Mn/Ce molar ratio of 2:1, led to an optimal efficiency for the oxidation of elemental mercury. Furthermore, the effects of flue gas components were investigated. The presence of O2 clearly promoted the oxidation of Hg0. A CO atmosphere did not affect the Hg0 oxidation, when compared with N2, whereas the presence of H2S and water vapor inhibited the oxidation process. Furthermore, the X‐ray photoelectron spectroscopy spectra of Hg 4f revealed that the elemental mercury adsorbed by the catalyst is present as HgO. Finally, the Hg0 catalytic oxidation mechanism was discussed on the basis of the experimental results and characterization analysis.  相似文献   
25.
This work aims at elucidating the mechanism of solvation of a radical ion pair (RIP) in a micro‐heterogeneous binary solvent mixture using magnetically affected reaction yield (MARY) spectroscopy. For the exciplex‐forming 9,10‐dimethylanthracene/N,N‐dimethylaniline system a comparative, composition‐dependent MARY line‐broadening study is undertaken in a heterogeneous (toluene/dimethylsulfoxide) and a quasi‐homogenous (propyl acetate/butyronitrile) solvent mixture. The half‐saturation field extrapolated to zero‐quencher concentration, B1/2, and the self‐exchange rate constants are analyzed in the light of solvent dynamical properties of the mixtures and a dielectric continuum solvation model. The dependence of B1/2 on the solvent composition is explained by cluster formation giving rise to shortened RIP lifetimes. The results are in qualitative agreement with the continuum solvation model suggesting that it could serve as a theoretical basis for quantitative modeling.  相似文献   
26.
27.
28.
表面结构是影响固体材料物理和化学性质的重要因素,由于高表面能的晶面上存在更多的表面悬挂键等,高表面能晶面裸露的微纳米晶体一般表现出很好的物理和化学活性.近年来,科研工作者针对高能面微纳米晶体材料的制备及性能调控进行了大量的研究工作并取得了一定的进展.本文重点讨论了高能面裸露的金属氧化物半导体微纳米晶体的合成制备方法.主要以本课题组近年在该领域的研究为例,分别从晶体生长过程中的静电作用法、“帽”式试剂保护法、过饱和度调控法、动力学调控法及选择性化学刻蚀法等几个方面对高表面能晶面裸露的金属氧化物微纳米晶体的制备进行了系统的总结.  相似文献   
29.
利用简便易行的液相法,采用葡萄糖为还原剂,通过调整加料方式、反应温度、NaOH用量等条件,实现具有{110}截面八面体、八面体和短足形等形貌的Cu2O微/纳米结构的可控制备,运用透射电子显微镜、扫描电子显微镜、紫外可见分光光度计等对产物进行组成、结构、形貌和光响应的表征,对Cu2O的形貌结构和生长机理进行研究。对比和优化了具有不同形貌的Cu2O微/纳米结构对甲基橙染料的光催化性能。将不同形貌的微/纳米Cu2O作为防污剂复配的自抛光防污涂料,涂层磨蚀率、接触角与实海挂板实验证明该涂料具有良好的防污性能。  相似文献   
30.
Poly(lactic acid) (PLA) is a biodegradable polymer that has a variety of applications, one of which is as biomaterial in surgery or as functional layers on implants, due to its compatibility with living tissue. This paper reports the possibilities of quantification of poly(lactic acid) (PLA) in a polymer matrix such as poly(methyl methacrylate) (PMMA) by micro Raman spectroscopy (MRS). Blends of amorphous poly(DL‐lactic acid) with poly(methyl methacrylate) were prepared by the procedure of dissolution/precipitation. Thermal properties of the blends such as the glass transition temperature (Tg) were characterized by differential scanning calorimetry (DSC). The PLA/PMMA blends exhibited only a single glass transition region, indicating that this system is miscible. The PLA/PMMA system obeys the Gordon–Taylor equation (Tg versus PLA content). Various concentration ratios of PLA blends were prepared to use as a basis for quantitative analysis by MRS. Intensities of the characteristic bands at 813 cm−1 (νCOC of PMMA) and 873 cm−1 (νC―COO of PLA) were used for the calculation. The calibration graph showed a good linear correlation with an R2 value of 0.9985. On the basis of the calibration curve obtained, the determined content of several PLA/PMMA blends was in good agreement when compared with nominal contents. The limit of detection (LOD) and quantification (LOQ) were calculated by the calibration data set as signal‐to‐noise method. The relative standard deviation of this method was lower than 10% and the accuracy better than 4%. This study demonstrated that Raman spectroscopy provides an alternative non destructive method for quantitative analysis of PLA in a PMMA matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号