首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   478篇
  国内免费   470篇
化学   2151篇
晶体学   18篇
力学   22篇
综合类   8篇
数学   4篇
物理学   284篇
  2024年   20篇
  2023年   46篇
  2022年   114篇
  2021年   188篇
  2020年   356篇
  2019年   156篇
  2018年   135篇
  2017年   85篇
  2016年   190篇
  2015年   142篇
  2014年   147篇
  2013年   146篇
  2012年   85篇
  2011年   70篇
  2010年   41篇
  2009年   73篇
  2008年   76篇
  2007年   79篇
  2006年   95篇
  2005年   59篇
  2004年   53篇
  2003年   45篇
  2002年   23篇
  2001年   18篇
  2000年   12篇
  1999年   5篇
  1998年   11篇
  1997年   4篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有2487条查询结果,搜索用时 31 毫秒
71.
The rapid development of electrochemical energy storage systems requires new electrode materials with high performance. As a two-dimensional material, molybdenum disulfide (MoS2) has attracted increasing interest in energy storage applications due to its layered structure, tunable physical and chemical properties, and high capacity. In this review, the atomic structures and properties of different phases of MoS2 are first introduced. Then, typical synthetic methods for MoS2 and MoS2-based composites are presented. Furthermore, the recent progress in the design of diverse MoS2-based micro/nanostructures for rechargeable batteries, including lithium-ion, lithium-sulfur, sodium-ion, potassium-ion, and multivalent-ion batteries, is overviewed. Additionally, the roles of advanced in situ/operando techniques and theoretical calculations in elucidating fundamental insights into the structural and electrochemical processes taking place in these materials during battery operation are illustrated. Finally, a perspective is given on how the properties of MoS2-based electrode materials are further improved and how they can find widespread application in the next-generation electrochemical energy-storage systems.  相似文献   
72.
Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.  相似文献   
73.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   
74.
75.
《中国化学》2018,36(2):157-161
The three‐dimensional nanoflower‐like β‐In2S3 composited with carbon nanotubes (CNTs) has been synthesized by a single mode microwave‐assisted hydrothermal technique. The In2S3 and CNTs nanocomposites (In2S3@CNTs) were investigated as the anode materials of lithium batteries (LIBs) and the electromagnetic wave absorption materials. For LIBs applications, the In2S3@CNTs nanocomposite exhibited excellent cycling stability with a high reversible charge capacity of 575 mA⋅h⋅g–1 after 300 cycles at 0.5 A⋅g–1. In addition, the In2S3@CNTs used as electromagnetic wave absorber displayed a maximum reflection loss of –42.75 dB at 11.96 GHz with a thickness of 1.55 mm.  相似文献   
76.
77.
78.
Abstract

The metal lithium is very important in industry, including lithium batteries. An important source of lithium besides continental brines is granitic pegmatites as in Australia. Lithiophilite is a lithium and manganese phosphate with chemical formula LiMnPO4 and forms a solid solution with triphylite, its Fe analog, and belongs to the triphylite group that includes karenwebberite, natrophilite, and sicklerite. The mineral lithiophilite was characterized by chemical analysis and spectroscopic techniques. The chemical is: Li1.01(Mn0.60, Fe0.41, Mg0.01, Ca0.01)(PO4)0.99 and corresponds to an intermediate member of the triphylite-lithiophilite series, with predominance of the lithiophilite member. The mineral lithiophilite is readily characterized by Raman and infrared spectroscopy.  相似文献   
79.
80.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li2MnO3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li2MnO3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li2Mn0.9Ti0.03O3的首圈放电比容量达到209 mAh·g-1,库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 mA·g-1时,掺杂改性的样品仍然可以放出120 mAh·g-1比容量,远高于同等电流密度下未掺杂的Li2MnO3原粉的比容量(52 mAh·g-1)。Ti掺杂可有效地改善Li2MnO3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号