首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2545篇
  免费   641篇
  国内免费   241篇
化学   2999篇
晶体学   6篇
力学   133篇
综合类   15篇
数学   110篇
物理学   164篇
  2024年   3篇
  2023年   37篇
  2022年   67篇
  2021年   103篇
  2020年   217篇
  2019年   161篇
  2018年   171篇
  2017年   115篇
  2016年   195篇
  2015年   198篇
  2014年   208篇
  2013年   291篇
  2012年   183篇
  2011年   184篇
  2010年   157篇
  2009年   137篇
  2008年   152篇
  2007年   123篇
  2006年   141篇
  2005年   92篇
  2004年   99篇
  2003年   94篇
  2002年   60篇
  2001年   49篇
  2000年   24篇
  1999年   16篇
  1998年   16篇
  1997年   32篇
  1996年   15篇
  1995年   11篇
  1994年   13篇
  1993年   14篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   8篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1971年   3篇
排序方式: 共有3427条查询结果,搜索用时 281 毫秒
111.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   
112.
《Mendeleev Communications》2022,32(4):510-513
The influence of textural characteristics on the catalytic performance of supported KCoMoS2 catalysts was explored to provide essential information for the design of better catalysts for the synthesis of higher alcohols (C1–C5) from syngas. Syngas conversion was carried out over KCoMoS2 catalysts supported on various mesoporous (alumina and carbon-coated alumina) and microporous (two types of powdered activated carbons) materials. The experimental results show that catalysts supported over microporous materials exhibit higher catalytic activity in HAS from syngas than catalysts based on mesoporous materials.  相似文献   
113.
A study on the influence of the cation coordination number, number of Lewis acid centers, concurrent existence of Lewis base sites, and structure topology on the catalytic activity of six new indium MOFs, has been carried out for multicomponent reactions (MCRs). The new indium polymeric frameworks, namely [In8(OH)6(popha)6(H2O)4]?3 H2O ( InPF‐16 ), [In(popha)(2,2′‐bipy)]?3 H2O ( InPF‐17 ), [In3(OH)3(popha)2(4,4′‐bipy)]?4 H2O ( InPF‐18 ), [In2(popha)2(4,4′‐bipy)2]?3 H2O ( InPF‐19 ), [In(OH)(Hpopha)]?0.5 (1,7‐phen) ( InPF‐20 ), and [In(popha)(1,10‐phen)]?4 H2O ( InPF‐21 ) (InPF=indium polymeric framework, H3popha=5‐(4‐carboxy‐2‐nitrophenoxy)isophthalic acid, phen=phenanthroline, bipy=bipyridine), have been hydrothermally obtained by using both conventional heating (CH) and microwave (MW) procedures. These indium frameworks show efficient Lewis acid behavior for the solvent‐free cyanosilylation of carbonyl compounds, the one pot Passerini 3‐component (P‐3CR) and the Ugi 4‐component (U‐4CR) reactions. In addition, InPF‐17 was found to be a highly reactive, recyclable, and environmentally benign catalyst, which allows the efficient synthesis of α‐aminoacyl amides. The relationship between the Lewis base/acid active site and the catalytic performance is explained by the 2D seven‐coordinated indium framework of the catalyst InPF‐17 . This study is an attempt to highlight the main structural and synthetic factors that have to be taken into account when planning a new, effective MOF‐based heterogeneous catalyst for multicomponent reactions.  相似文献   
114.
Tungstate ions were successfully loaded onto triazine‐based ionic liquid‐functionalized magnetic nanoparticles through an anion exchange process. The use of triazine core for creating ionic liquid led to the immobilization of high amounts of WO42?. The resulting catalyst showed high activity and selectivity in the oxidation of sulfides to sulfoxides with H2O2 as a green oxidant at room temperature. In addition, due to the presence of ammonium groups in the catalyst structure, water dispersibility of the catalyst was increased. More important, the catalyst was magnetically recovered and reused for up to six runs without any marked decrease of activity and selectivity. Finally, easy gram‐scale oxidation of methylphenyl sulfide as well as fast separation of catalyst and product makes the protocol economical and industrially applicable.  相似文献   
115.
116.
《化学:亚洲杂志》2017,12(17):2318-2322
Copper nanocubes with average sizes of 82, 95, and 108 nm have been synthesized in an aqueous mixture of cetyltrimethylammonium chloride (CTAC) surfactant, copper acetate, and sodium ascorbate reductant heated at 100 °C for 40 min. Copper nanowires with an average length of 25 μm can also be prepared this way by simply increasing the volume of sodium ascorbate introduced. Small shifts in the plasmonic absorption band positions with tunable particle sizes have been observed. The copper nanocubes were employed to catalyze hydroboration of phenylacetylene and various substituted aryl alkynes with 100 % (E )‐product selectivity and 82–95 % product yields. The copper nanocubes are cheap to make and should catalyze a broad scope of organic coupling reactions.  相似文献   
117.
Graphene oxide was functionalized with benzimidazole for palladium immobilization. The resultant graphene–benzimidazole‐supported palladium composite (G‐BI‐Pd) was characterized using infrared and Raman spectroscopies, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. G‐BI‐Pd showed excellent catalytic activity and fast reaction kinetics in the aqueous‐phase Suzuki–Miyaura reaction of aryl iodides and bromides with phenylboronic acid under relatively mild conditions (5–25 min, 80 °C). The catalyst can be used several times without any significant loss of its catalytic activity.  相似文献   
118.
Silica-bonded N-propyl diethylenetriamine sulfamic acid (SBPDSA) is employed as a recyclable catalyst to synthesize α-aminonitriles. These syntheses involved one-pot condensation of an aldehyde, an amine, and trimethylsilyl cyanide under mild reaction conditions at room temperature. SBPDSA was recycled seven times in the condensation of benzaldehyde, aniline, and trimethylsilyl cyanide without reduction of its catalytic activity.  相似文献   
119.
Copper supported on polymer‐coated magnetic nanoparticles was designed and synthesized as a separable heterogeneous catalyst. The catalyst was fully characterized using several techniques such as Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, scanning and transmission electron microscopies, X‐ray diffraction, vibrating sample magnetometry, thermogravimetric analysis and inductively coupled plasma atomic emission spectrometry. All results showed that copper was successfully supported on the polymer‐coated magnetic nanoparticles. Also, results showed that the synthesized material can be used as an efficient catalyst for the preparation of a series of 1,4‐disubstituted 1,2,3‐triazoles from corresponding halides, alkynes and sodium azide. The catalyst can be easily isolated from the reaction solution by applying an external magnet and reused for nine runs without any significant loss of catalytic activity.  相似文献   
120.
Novel heterogeneous tungsten species in mesoporous silica SBA‐16 catalysts based on ship‐in‐a‐bottle methodology are originally reported for oxidizing cyclopentene (CPE) to glutaric acid (GAC) using hydrogen peroxide (H2O2). For all W‐SBA‐16 catalysts, isolated tungsten species and octahedrally coordinated tungsten oxide species are observed while WO3 crystallites are detected for the W‐SBA‐16 catalysts with Si/ W = 5, 10, and 20. The specific surface areas and the corresponding total pore volumes decrease significantly as increasing amounts of tungsten incorporated into the pores of SBA‐16. Using tungsten‐substituted mesoporous SBA‐16 heterogeneous catalysts, high yield of GAC (55%) is achieved with low tungsten loading (for Si/W = 30, ~13 wt%) for oxidation of CPE. The W‐SBA‐16 catalysts with Si/W = 30 can be reused five times without dramatic deactivation. In fact, low catalytic activity provided by bulk WO3 implies that the highly distributed tungsten species in SBA‐16 and the steric confinement effect of SBA‐16 are key elements for the outstanding catalytic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号