首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17339篇
  免费   3577篇
  国内免费   2864篇
化学   9904篇
晶体学   256篇
力学   1532篇
综合类   157篇
数学   1704篇
物理学   10227篇
  2024年   54篇
  2023年   232篇
  2022年   394篇
  2021年   585篇
  2020年   766篇
  2019年   603篇
  2018年   614篇
  2017年   681篇
  2016年   793篇
  2015年   709篇
  2014年   1023篇
  2013年   1556篇
  2012年   1088篇
  2011年   1200篇
  2010年   1019篇
  2009年   1251篇
  2008年   1241篇
  2007年   1252篇
  2006年   1205篇
  2005年   935篇
  2004年   867篇
  2003年   803篇
  2002年   657篇
  2001年   574篇
  2000年   546篇
  1999年   479篇
  1998年   424篇
  1997年   344篇
  1996年   277篇
  1995年   243篇
  1994年   206篇
  1993年   158篇
  1992年   127篇
  1991年   134篇
  1990年   90篇
  1989年   92篇
  1988年   79篇
  1987年   68篇
  1986年   63篇
  1985年   61篇
  1984年   43篇
  1983年   24篇
  1982年   40篇
  1981年   35篇
  1980年   29篇
  1979年   28篇
  1978年   13篇
  1977年   22篇
  1976年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
We present a new implementation of a recent open‐ended response theory formulation for time‐ and perturbation‐dependent basis sets (Thorvaldsen et al., J. Chem. Phys. 2008, 129, 214108) at the Hartree–Fock and density functional levels of theory. A novel feature of the new implementation is the use of recursive programming techniques, making it possible to write highly compact code for the analytic calculation of any response property at any valid choice of rule for the order of perturbation at which to include perturbed density matrices. The formalism is expressed in terms of the density matrix in the atomic orbital basis, allowing the recursive scheme presented here to be used in linear‐scaling formulations of response theory as well as with two‐ and four‐component relativistic wave functions. To demonstrate the new code, we present calculations of the third geometrical derivatives of the frequency‐dependent second hyperpolarizability for HSOH at the Hartree–Fock level of theory, a seventh‐order energy derivative involving basis sets that are both time and perturbation dependent. © 2014 Wiley Periodicals, Inc.  相似文献   
992.
We present a detailed computational investigation of the induced‐fit motion in a nylon‐oligomer hydrolase (NylB) upon substrate binding. To this aim, we resort on the recently introduced parallel cascade selection molecular dynamics approach, allowing for an accelerated access to the set of conformational changes from an open‐ to a closed‐state structure to form the enzyme‐substrate complex in a specific induce‐fit mechanism. The structural investigation is quantitatively complemented by free energy analyses within the umbrella sampling algorithm accompanied by weighted histogram analysis. We find that the stabilization free energy is about 1.4 kcal/mol, whereas the highest free energy barrier to be overcome is about 2.3 kcal/mol. Conversely, the energetic contribution for the substrate binding is about 20 kcal/mol, as estimated from Generalized Born/Surface Area. This means that the open‐close induced‐fit motion could occur frequently once the substrate binds to the open state of NylB. © 2014 Wiley Periodicals, Inc.  相似文献   
993.
READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. © 2014 Wiley Periodicals, Inc.  相似文献   
994.
Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally‐determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet‐lab experimentation. © 2014 Wiley Periodicals, Inc.  相似文献   
995.
Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL‐2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single‐walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D–2 law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single‐wall components of the double‐wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross‐section of the external walls in the armchair‐like double‐wall nanotubes. © 2013 Wiley Periodicals, Inc.  相似文献   
996.
997.
An little known yet significant issue in petroleum production processes in petroleum reservoirs is asphaltene precipitation/deposition. Asphaltene has not only a fuzzy and vague nature but it also can cause detrimental problems like reservoir blockage and, as a result, low oil recovery. To tackle this issue, many researchers have attempted to monitor asphaltene behavior versus thermodynamic conditions. A thermodynamic micellization approach is implemented in this work to describe asphaltene precipitation behavior for two sample fluids from Iranian reservoirs. First, the basic structures of the addressed approach and different contributions to Gibbs free energy of micellization proposed by Victorov and Firoozabadi (VF) are demonstrated. Second, a detailed sensitivity analysis with respect to the model parameters is performed by utilizing a new calculation strategy. Finally, a comparison between the predicted precipitation curve and the experimental one is illustrated; moreover, comparing our results with those reported by Victorov proves the superiority of the new strategy over the conventional one. The significance of this study shows the effect of each micellization parameter on the asphaltene precipitation behavior curve and illustrates the ability of the micellization approach evolved by VF in monitoring the effect of pressure on asphaltene precipitation using the new calculation procedure. Outcomes from this study could couple with commercial reservoir simulation software to improve precision and integrity for designing robust and effective production units.  相似文献   
998.
Computational protein design (CPD) aims at predicting new proteins or modifying existing ones. The computational challenge is huge as it requires exploring an enormous sequence and conformation space. The difficulty can be reduced by considering a fixed backbone and a discrete set of sidechain conformations. Another common strategy consists in precalculating a pairwise energy matrix, from which the energy of any sequence/conformation can be quickly obtained. In this work, we examine the pairwise decomposition of protein MMGBSA energy functions from a general theoretical perspective, and an implementation proposed earlier for CPD. It includes a Generalized Born term, whose many‐body character is overcome using an effective dielectric environment, and a Surface Area term, for which we present an improved pairwise decomposition. A detailed evaluation of the error introduced by the decomposition on the different energy components is performed. We show that the error remains reasonable, compared to other uncertainties. © 2014 Wiley Periodicals, Inc.  相似文献   
999.
以C2H5NS和In(NO3)3为前驱物,采用简单的液相法成功制备了In2S3纳米多级结构,C2H5NS作为硫源的同时也起到了模板剂的作用.研究结果表明,前驱物浓度对In2S3形貌控制起着重要作用.随着In(NO3)3/C2H5NS摩尔比从1∶1.5增加到1∶6,In2S3纳米花呈现了不同的形貌和尺寸.XRD谱图显示,In2S3纳米花晶体具有立方结构.SEM和TEM照片显示,制备的In2S3纳米结构呈多级花状结构,这种结构由纳米片堆积组装而成.通过第一性原理计算并结合实验结果对C2H5NS影响纳米片生长的机理进行了分析,结果表明C2H5NS在In2S3(001)晶面上的吸附可以有效降低晶面的表面能,起到稳定晶面的作用;纳米花的形成是在C2H5NS影响In2S3的晶面稳定性及其成核速率之间的一个协同效应.In2S3纳米晶的形貌可以通过调整反应溶液中的C2H5NS浓度来调节.  相似文献   
1000.
稀土离子(LnⅢ)丰富的4f电子跃迁能级,使稀土发光材料获得重要而广泛的应用.稀土配合物中天线基团的引入,弥补了稀土离子f-f跃迁禁阻而导致吸收较低的不足.而具有三重态吸收的过渡金属配合物作为天线基团,更使稀土离子的激发窗口红移.相关研究具有重要的理论意义和实际应用价值.本文主要综述近年来有关铱(IrⅢ)-稀土(LnⅢ)异核发光配合物方面的研究进展.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号