首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720篇
  免费   500篇
  国内免费   181篇
化学   837篇
晶体学   16篇
力学   90篇
综合类   11篇
数学   23篇
物理学   1424篇
  2024年   2篇
  2023年   5篇
  2022年   33篇
  2021年   57篇
  2020年   38篇
  2019年   63篇
  2018年   42篇
  2017年   75篇
  2016年   61篇
  2015年   95篇
  2014年   103篇
  2013年   144篇
  2012年   121篇
  2011年   124篇
  2010年   94篇
  2009年   104篇
  2008年   120篇
  2007年   138篇
  2006年   132篇
  2005年   119篇
  2004年   89篇
  2003年   99篇
  2002年   73篇
  2001年   74篇
  2000年   63篇
  1999年   40篇
  1998年   38篇
  1997年   38篇
  1996年   24篇
  1995年   17篇
  1994年   25篇
  1993年   22篇
  1992年   17篇
  1991年   9篇
  1990年   23篇
  1989年   14篇
  1988年   13篇
  1987年   12篇
  1986年   8篇
  1985年   11篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1959年   1篇
排序方式: 共有2401条查询结果,搜索用时 31 毫秒
51.
以水-乙二醇为溶剂,以聚乙烯吡咯烷酮(PVP)为表面活性剂,采用溶剂热法合成了NiO纳米片,NiO纳米薄片通过自组装形成花状结构。 改变反应温度和溶剂,制备了NiO纳米立方体颗粒和NiO纳米球形颗粒。 用合成的NiO纳米材料制备工作电极,在6 mol/L的KOH溶液中利用三电极体系进行了电化学性能测试。 在电化学性能测试中进行了循环伏安测试、恒电流充放电测试和电化学阻抗谱(EIS)测试。 结果表明,NiO纳米片的比电容最高(在电流密度为0.5 A/g时比电容值为402 F/g),倍率性能最佳(0.5 A/g增加至4 A/g时有80.1%的电容保持率)。 在电流密度为4 A/g时对NiO纳米片进行1000次恒流充放电循环测试,比电容损失了9.7%。  相似文献   
52.
PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by infrared spectrum. 2SPVC's specific area is 36.1 m2·g-1 tested by stand BET method, and granularity experiment gives out the particle size of d0.5= 11.3μm. With SEM (Scanning Electron Microscope) experiment the surface morphology and particle shape of 2SPVC were observed. Cyclic voltammetry (scan rate: 0.5 mV·s-1) shows that 2SPVC experience an obvious S-S redox reaction in charge-discharge process. When 2SPVC was used as cathode material for secondary lithium battery in a 1 mol·L-1 solution of lithium bis(trifluoromethylsulfonyl) imide (Li(CF3SO2)2N) in a 5:45:50 volume ratio mixture of o-xylene (oxy), diglyme (DG) and dimethoxymethane (DME) at 30℃, the first discharge capacity of 2SPVC is about 400.3 mAh·g-1 which is very close to its theoretical value (410.5 mAh·g-1) at a constant discharge current of 15 mA·g-1. It can retain at about 346.1 mAh·g-1 of discharge capacity after 30 charge-discharge cycles. So 2SPVC is a very promising cathode candidate for rechargeable lithium batteries.  相似文献   
53.
聚1-氨基蒽醌在二次锂电池正极材料中的应用   总被引:4,自引:0,他引:4  
采用化学方法合成聚1-氨基蒽醌并用于二次锂电池正极材料,通过红外光谱、扫描电镜、粒度测试、循环伏安以及充放电测试等方法对材料的官能团结构、微观形貌、颗粒大小以及电化学性能等进行了研究与分析.实验表明,与金属锂组成二次锂电池后,聚1-氨基蒽醌达到了218.3 mAh•g-1的首次放电容量,经过25次循环后仍可保持较高的充放电效率.由于材料具有较高的能量密度且不含对环境有污染的元素S,因此是二次锂电池非常有希望的正极材料.  相似文献   
54.
Reactive constituents have been investigated in a molecular beam generated in the cathode surface glow area and surface boundary layer. Mixtures of nitrogen and hydrogen form NHx(x=0–4) compounds, which are of relevance in heterogeneous, plasma vs. metal nitriding reactions. Ammonia decomposition leads to NHx(x=2–4). Strong cataphoretic enrichment of hydrogen has been observed in the cathode glow area. Heterogeneous reactions of NHx with iron lead to the formation of iron nitrides via intermediates such as FeNH2–3. In a pulsed d.c. glow discharge, increased sputtering and decreased hydrogen enrichment have been observed.  相似文献   
55.
Plasma treatment of a polymeric surface could involve at least three major mechanisms: (1) direct interaction of reactive species in the low-temperature plasma state with the surface (line of sight irradiation effect), and (2) chemical reactions of plasma-induced reactive species with the surface, and (3) reactions among reactive species and the surface (plasma polymerization). The first and the third effects are considered to be limited to the surfaces which directly contact with plasma (glow). The second effect is not limited to the surfaces that contact with plasma state but can penetrate beyond the plasma zone by diffusion. Using an assembly of fibers, of which only the top layer contacts with plasma (glow), the penetration of chemical changes caused by plasma exposure was investigated. Results indicate that the fluorination effect (incorporation of fluorine-containing moieties on the surface of polymeric substrate) penetrates through a considerable thickness of the assembly of fibers, depending on the porosity (gas permeability) of the system. Chemical reactions of plasma-induced (chemically) reactive but nonpolymerizing species with the substrate fibers seems to predominate. The direct interactions of energetic species, such as ions, electrons, and electronically excited species, with polymeric surfaces seems to play relatively minor roles in the plasma treatment investigated. The major role of plasma, in this case, seems to be creating such chemically reactive species. © 1994 John Wiley & Sons, Inc.  相似文献   
56.
The decomposition of N2O in a 13.56-MHz parallel-plate system was studied usingin situ Fourier transform infrared (FTIR) spectroscopy. Areas of two infrared absorption bands of N2O recorded at 8 cm–1 resolution were used to estimate relative gas-phase dissociation as a function of rf power and flow rate at 500 mT. Flow rate was found to strongly affect band areas over the range of powers investigated (10–90 W). The effect of rf power on band areas diminished above 40 W, probably due to poor plasma confinement. Distortion of the band shapes by the plasma permitted rotational temperatures to be estimated. Rotational temperature increased essentially linearly with power at constant flow rate, reaching 450 K at 80 W, but was independent of flow rate at constant power. Rotational temperatures were also found to depend on the temperature of the electrodes, which were heated by plasma exposure. No infrared-active product species were observed even under batch conditions where all N2O was irreversibly dissociated. This lack of detectable products and a 50% pressure rise observed in a batch study suggest that N2 and O2 are the primary stable discharge products.  相似文献   
57.
In this investigation, a clean, atomic economic and direct synthesis of oxygenates (methanol, ethanol) form water and methane via dielectric-barrier discharge was developed at room temperature and under atmospheric pressure. The effect of discharge voltage on this process was studied. The results showed that the conversion of water can be as high as 7%, the selectivity of methanol and ethanol can be as high as 100%.  相似文献   
58.
Glow discharge mass spectrometry   总被引:5,自引:0,他引:5  
Over the past twenty years or so, glow discharge mass spectrometry (GDMS) has become the industry standard for the analysis of trace elements in metals and semiconductors. A review of its history is followed by a picture of the present situation and a look to where the future may lie. Applications are summarised, including the ability of GDMS to offer depth-resolved data and non-conductor analysis, and the well-documented quantitative nature of the results is reviewed. The effects resulting from the physical properties of the analyte material are discussed at length. Finally, recent work such as fast flow sources and pulsed glow discharges is reviewed.  相似文献   
59.
Laser-induced fluorescence (LIF) is an effective in-situ probe for NO concentrations below 300 ppm in a non-thermal plasma reactor. A new method has been developed to measure in-situ NO concentration in the reactor discharge region using a long-time—on the order of seconds—averaged fluorescence detection. This method, for quantifying NO concentration in a nonthermal plasma reactor, is simpler than a short-time—on the order of nanoseconds—fluorescence detection. For accurate measurement based on the new method, the LIF intensity must be close to the corona-induced fluorescence (CIF) intensity; the CIF intensity serves as a guide in selecting the LIF intensity. We find that a kinetic model proposed earlier works for two-tube reactors and represents the NO concentration in the middle of the reactor, which verifies the assumption of gas plug flow.  相似文献   
60.
The combined effects of oxygen and water vapor on three typical volatile organic compounds, i.e. tetrachloromethane, n-butane and toluene, decomposition efficiency under gliding arc gas discharge conditions are studied. The electron density and the density of the reactive radicals such as O and OH are modified by addition of oxygen and water vapor. Consequently, the decomposition process can be enhanced or suppressed, depending on the involved chemical structures and reaction channels. The addition of oxygen and water vapor suppresses the tetrachloromethane decomposition which indicates that this process is mainly controlled by the electron dissociation reactions. By contrast, the n-butane and toluene decompositions are enhanced, which shows that they can be mainly ascribed to the radical induced reactions. Especially, in a moist atmosphere the OH radicals are supposed to play the most important role in the n-butane decomposition process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号