首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   142篇
  国内免费   46篇
化学   837篇
晶体学   2篇
物理学   29篇
  2024年   2篇
  2023年   6篇
  2022年   17篇
  2021年   30篇
  2020年   63篇
  2019年   23篇
  2018年   21篇
  2017年   18篇
  2016年   47篇
  2015年   40篇
  2014年   62篇
  2013年   68篇
  2012年   87篇
  2011年   57篇
  2010年   51篇
  2009年   50篇
  2008年   47篇
  2007年   31篇
  2006年   44篇
  2005年   18篇
  2004年   26篇
  2003年   27篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1991年   2篇
  1982年   1篇
排序方式: 共有868条查询结果,搜索用时 468 毫秒
831.
-cyclodextrin-coated sensors chips were obtained by grafting amino--cyclodextrin or amino-polymers of -cyclodextrin (poly--CD-NH2) to functionalized gold surfaces. An additional carboxymethylated dextran bearing adamantyl groups (Ad-Dex-COOH) was then immobilized onto the surface by formation of inclusion complexes between -cyclodextrin cavities and adamantyl groups. Such multilayered structures were stable in aqueous media. However, the initial -cyclodextrin-coated surface could be recovered by using sodium dodecylsulfate solutions (SDS). After activation withN-hydoxysuccinimide, dextran-coated sensor chips were used to bind antibodies. The immunoreactivity of the resulting biosensors was examined. Moreover, conditions leading to the complete regeneration of the initial surface were investigated. Throughout this study, interfacial adsorption and desorption phenomena were followed in real time by an optical technique, Surface Plasmon Resonance (SPR).  相似文献   
832.
Protein-Based Biosensors for Diabetic Patients   总被引:1,自引:0,他引:1  
In this article we show the recent progress in the field of glucose sensing based on the utilization of enzymes and proteins as probes for stable and non-consuming fluorescence biosensors. We developed a new methodology for glucose sensing using inactive forms of enzymes such as the glucose oxidase from Aspergillus niger, the glucose dehydrogenase from the thermophilic microorganism Thermoplasma acidophilum, and the glucokinase from the thermophilic eubacterium Bacillus stearothermophilus. Glucose oxidase was rendered inactive by removal of the FAD cofactor. The resulting apo-glucose oxidase still binds glucose as observed from a decrease in its intrinsic tryptophan fluorescence. 8-Anilino-1-naphthalene sulfonic acid was found to bind spontaneously to apo-glucose oxidase as seen from an enhancement of the ANS fluorescence. The steady state intensity of the bound ANS decreased 25% upon binding of glucose, and the mean lifetime of the bound ANS decreased about 40%. These spectral changes occurred with a midpoint from 10 to 20 mM glucose, which is comparable to the KD of holo-glucose oxidase. The ANS-labeled apo-glucose dehydrogenase from Thermoplasma acidophilum also displayed an approximate 25% decrease in emission intensity upon binding glucose. This decrease can be also used to measure the glucose concentration. The thermophilic apo-glucose dehydrogenase was also stable in the presence of organic solvents, allowing determination of glucose in the presence of acetone. The third enzyme used for glucose sensing was the glucokinase from Bacillus stearothermophilus. A fluorescence competitive assay for the determination of glucose was developed based on the utilization of this thermostable enzyme. Taken together, our results show that enzymes which use glucose as their substrate can be used as reversible and non-consuming glucose biosensors in the absence of required co-factors. Moreover, the possibility of using inactive apo-enzymes for a reversible sensor greatly expands the range of proteins which can be used as sensors, not only for glucose, but for a wide variety of biochemically relevant analytes.  相似文献   
833.
834.
《Analytica chimica acta》2002,459(1):43-51
The electrochemical behavior of a glassy carbon paste electrode (GCPE) is evaluated in comparison to that of graphite paste electrode (gPE) and glassy carbon electrode (GCE). Important shifting in the peak potentials and increases in the peak currents for catechol, ascorbic acid, dopamine and hydroquinone were obtained for the GCPE and its usefulness for the development of phenol and catechol biosensors was also evaluated. Both, pure mushroom polyphenol oxidase (PPO) and fresh mushroom tissues were used as biorecognition elements. The effect of the binder percentage in the composite material was also studied. The bioelectrode was used for the determination of dopamine and acetaminophen in pharmaceutical formulations and for the detection of polyphenols in wine and tea. The bioelectrode demonstrated to be very stable as the response remained around 90% after four months at 4 °C.  相似文献   
835.
Nanomaterials with enzyme‐like activities, coined nanozymes, have been researched widely as they offer unparalleled advantages in terms of low cost, superior activity, and high stability. The complex structure and composition of nanozymes has led to extensive investigation of their catalytic sites at an atomic scale, and to an in‐depth understanding of the biocatalysis occurring. Single‐atom catalysts (SACs), characterized by atomically dispersed active sites, have provided opportunities for mimicking metalloprotease and for bridging the gap between natural enzymes and nanozymes. In this Minireview, we illustrate the unique properties of nanozymes and we discuss recent advances in the synthesis, characterization, and applications of SACs. Subsequently, we outline the impressive progress made in single‐atom nanozymes and we discuss their applications in sensing, degradation of organic pollutants, and in therapeutic roles. Finally, we present the major challenges and opportunities remaining for a successful marriage of nanozymes and SACs.  相似文献   
836.
Biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), coexist in biological systems with diverse biological roles. Thus, analytical techniques that can detect, quantify, and distinguish between multiple biothiols are desirable but challenging. Herein, we demonstrate the simultaneous detection and quantitation of multiple biothiols, including up to three different biothiols in a single sample, using electron paramagnetic resonance (EPR) spectroscopy and a trityl‐radical‐based probe (MTST). We term this technique EPR thiol‐trapping. MTST could trap thiols through its methanethiosulfonate group to form the corresponding disulfide conjugate with an EPR spectrum characteristic of the trapped thiol. MTST was used to investigate effects of l ‐buthionine sulfoximine (BSO) and pyrrolidine dithiocarbamate (PDTC) on the efflux of GSH and Cys from HepG2 cells.  相似文献   
837.
Ligand‐protected gold nanoclusters (AuNCs) have emerged as a new class of electrochemiluminescence (ECL) luminophores for their interesting catalytic and emission properties, although their quantum yield (ΦECL) in aqueous medium is low with a poor mechanistic understanding of the ECL process. Now it is shown that drying AuNCs on electrodes enabled both enhanced electrochemical excitation by an electrocatalytic effect, and enhanced emission by aggregation‐induced ECL (AIECL) for 6‐aza‐2‐thiothymine (ATT) protected AuNCs with triethylamine (TEA) as a coreactant. The dried ATT‐AuNCs/TEA system resulted in highly stable visual ECL with a ΦECL of 78 %, and a similar enhancement was also achieved with methionine‐capped AuNCs. The drying enabled dual‐enhancement mechanism has solved a challenging mechanistic problem for AuNC ECL probes, and can guide further rational design of ECL emitters.  相似文献   
838.
Controlling the emission of bright luminescent nanoparticles by a single molecular recognition event remains a challenge in the design of ultrasensitive probes for biomolecules. Herein, we developed 20‐nm light‐harvesting nanoantenna particles, built of a tailor‐made hydrophobic charged polymer poly(ethyl methacrylate‐co‐methacrylic acid), encapsulating circa 1000 strongly coupled and highly emissive rhodamine dyes with their bulky counterion. Being 87‐fold brighter than quantum dots QDots 605 in single‐particle microscopy (with 550‐nm excitation), these DNA‐functionalized nanoparticles exhibit over 50 % total FRET efficiency to a single hybridized FRET acceptor, a highly photostable dye (ATTO665), leading to circa 250‐fold signal amplification. The obtained FRET nanoprobes enable single‐molecule detection of short DNA and RNA sequences, encoding a cancer marker (survivin), and imaging single hybridization events by an epi‐fluorescence microscope with ultralow excitation irradiance close to that of ambient sunlight.  相似文献   
839.
Chemical biologists have developed many tools based on genetically encoded macromolecules and small, synthetic compounds. The two different approaches are extremely useful, but they have inherent limitations. In this Minireview, we highlight examples of strategies that combine both concepts to tackle challenging problems in chemical biology. We discuss applications in imaging, with a focus on super‐resolved techniques, and in probe and drug delivery. We propose future directions in this field, hoping to inspire chemical biologists to develop new combinations of synthetic and genetically encoded probes.  相似文献   
840.
Metal–organic frameworks (MOFs) have limited applications in electrochemistry owing to their poor conductivity. Now, an electroactive MOF (E‐MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium. The E‐MOF contains mixed ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. E‐MOFs demonstrate excellent performance with surface state model in both co‐reactant and annihilation ECL in aqueous medium. Compared with the individual components, E‐MOFs significantly improve the ECL emission due to the framework structure. The self‐enhanced ECL emission with high stability is realized by the accumulation of MOF cation radicals via pre‐reduction electrolysis. The self‐enhanced mechanism is theoretically identified by DFT. The mixed‐ligand E‐MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号