首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1725篇
  免费   34篇
  国内免费   97篇
化学   483篇
晶体学   2篇
力学   8篇
数学   56篇
物理学   1307篇
  2024年   2篇
  2023年   49篇
  2022年   13篇
  2021年   10篇
  2020年   34篇
  2019年   40篇
  2018年   57篇
  2017年   37篇
  2016年   39篇
  2015年   41篇
  2014年   61篇
  2013年   92篇
  2012年   109篇
  2011年   154篇
  2010年   96篇
  2009年   101篇
  2008年   126篇
  2007年   101篇
  2006年   101篇
  2005年   58篇
  2004年   51篇
  2003年   56篇
  2002年   64篇
  2001年   45篇
  2000年   65篇
  1999年   52篇
  1998年   42篇
  1997年   17篇
  1996年   15篇
  1995年   15篇
  1994年   19篇
  1993年   11篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1989年   13篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1981年   4篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有1856条查询结果,搜索用时 28 毫秒
61.
设计合成了具有荧光基团的新型硝酮类自由基捕获探针并对其结构进行了表征.自由基捕获实验结果表明,该探针能实现对超氧阴离子自由基与碳中心自由基的捕获.此外,该自由基捕获探针反应产物的荧光强度与被捕获自由基浓度之间存在相关性,有望建立依据荧光强度分析被捕获自由基浓度的新方法.  相似文献   
62.
In this study, we developed a simple and selective spin column extraction technology utilizing hydrophilic molecularly imprinted polymers as the sorbents for extracting nitrophenol pollutants in water samples (the East Lake, the Yangtze River, and wastewater). The whole procedure was achieved by centrifugation of the spin column, and multiple samples were simultaneously processed with a low volume of solvent and without evaporation. Under the optimized condition, recoveries of nitrophenol compounds on the spin column packed with hydrophilic molecularly imprinted polymers ranged from 87.3 to 92.9% and an excellent purification effect was obtained. Compared with activated carbon, multi‐walled carbon nanotubes, LC‐C18 sorbents, hydrophilic molecularly imprinted polymers exhibited a highly selective recognition ability for nitrophenol compounds and satisfactory sample extraction efficiency. Subsequently, the spin column extraction coupled with high‐performance liquid chromatography was established, which was found to be linear in the range of 2–1000 ng/mL for 2,4‐dinitropehnol and 2‐nitrophenol, and 6–1000 ng/mL for 4‐nitrophenol with correlation coefficients greater than 0.998. The detection limits ranged from 0.3–0.5 ng/mL. It is shown that the proposed method can be used for the determination of trace nitrophenol pollutants in complex samples, which is not only beneficial for water quality analysis but also for environmental risk assessment.  相似文献   
63.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   
64.
《Comptes Rendus Physique》2016,17(7):693-704
This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV (as in nitrogen vacancy) center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins.  相似文献   
65.
66.
The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are −0.941 μB, −1.663 μB, −3.239 μB, −3.276 μB and −3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are −0.928 meV, 20.941 meV, −8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.  相似文献   
67.
We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.  相似文献   
68.
The SERF experiment is a variant of the homonuclear J-resolved experiment, in which a single coupling constant is measured. It consists of a single chemical shift selective excitation that is followed by a biselective spin echo. Recent articles mention the existence of artefacts in SERF spectra that are supposedly related to pulse imperfections. This article presents a detailed study of the biselective refocusing pulses. It also reports a method for predicting the position and amplitude of the expected and unexpected 2D spectral peaks in SERF spectra. Artefacts can be partially eliminated by phase cycling or by the introduction of static field gradient pulses in the acquisition sequence. A procedure to obtain of pure absorption peaks in SERF spectra is proposed.  相似文献   
69.
Four-component Bogoliubov-de Gennes equations are applied to study tunneling conductance spectra of ferromagnet/ferromagnet/d-wave superconductor (F1/F2/d-wave S) tunnel junctions and to find out signs of spin-triplet pairing correlations induced in the proximity structure. The pairing correlations with equal spins arises from the novel Andreev reflection (AR), which requires at least three factors: the usual AR at the F2/S interface, spin flip in the F2 layer, and superconducting coherence kept up in the F2 layer. Effects of angle α between magnetizations of the two F layers, polarizations of the F1 and F2 layers, the thickness of the F2 layer, and the orientation of the d-wave S crystal on the tunneling conductance are investigated. A conversion from a zero-bias conductance dip at α = 0 to a zero-bias conductance peak at a certain value of α can be seen as a sign of generated spin-triplet correlations.  相似文献   
70.
We have studied the behavior of the energy gap of the 1D AF spin- XXZ model in a transverse magnetic field (h) using the exact diagonalization technique. The ground state phase diagram consists of two spin-flop and paramagnetic phases. Using a modified finite-size scaling approach, we have computed the critical exponent of the energy gap in the vicinity of the critical transverse field hc(Δ). Our numerical results confirm that the continuous phase transition from the spin-flop phase to the paramagnetic one is in the universality class of the Ising model in the transverse field (ITF). By applying conformal estimates of a small perturbation (h≪1), we have also justified our numerical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号