首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   141篇
  国内免费   82篇
化学   488篇
晶体学   7篇
力学   24篇
综合类   7篇
数学   20篇
物理学   575篇
  2024年   4篇
  2023年   24篇
  2022年   58篇
  2021年   101篇
  2020年   69篇
  2019年   28篇
  2018年   33篇
  2017年   49篇
  2016年   53篇
  2015年   30篇
  2014年   75篇
  2013年   87篇
  2012年   50篇
  2011年   48篇
  2010年   38篇
  2009年   35篇
  2008年   35篇
  2007年   53篇
  2006年   33篇
  2005年   22篇
  2004年   25篇
  2003年   28篇
  2002年   24篇
  2001年   16篇
  2000年   18篇
  1999年   14篇
  1998年   9篇
  1997年   5篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有1121条查询结果,搜索用时 31 毫秒
61.
郝晶晶  朱日宏  陆健 《应用光学》2007,28(6):764-768
简要介绍了激光超声技术以及声表面波的基本特点、激光超声产生和接收的基本原理及激光超声技术的应用。概述了聚偏二氟乙烯(PVDF)压电薄膜材料的结构、性质和应用,以及薄膜压电性产生的机理。对PVDF换能器的设计思路和实验方法进行了简单讨论。具体实验采用脉冲激光器激发声表面波,利用PVDF传感器接收实验信号,调试实验信号,得出波形,并对实验现象作出初步分析。证实了该实验装置应用于激光超声无损检测的可行性与可靠性。  相似文献   
62.
63.
用B超对119例晚期妊娠出现高腹压征候群的病人分析。结果显示,该症与孕妇体位、妊娠期间胎位,羊水的多少,初产孕妇及一些不确定的体外倒转引起的孕妇腔静脉受压部位及程度关系密切。认为在仰卧位或截石位的羊水偏少和早破水的晚期孕妇,若出现不明原因头晕眼花,大汗淋漓,心慌心跳,甚至休克,应迅速改变体位,及时纠正。  相似文献   
64.
朱晓峰  周琳  章东  龚秀芬 《中国物理》2005,14(8):1594-1599
应用角谱方法理论研究了聚焦声束在层状生物组织中的非线性传播特性,将声波分解为角谱,可计算垂直于声轴的任意平面的非线性声场。在圆形平面活塞聚焦换能器的焦区中插入多种生物组织样品,数值计算了样品内部及外部的二次谐波声场,并通过实验测量验证了理论方法的有效性。基于快速傅氏变换的角谱方法可直观地描述非线性声传播,对非线性声成像有指导作用。  相似文献   
65.
An aluminium hemicylindrical sample has been irradiated with an array of laser lines, with each line acting as a source of acoustic waves. Detection of the generated ultrasonic waves was performed using both a wide-band stabilized Michelson interferometer and a 20 MHz piezoelectric transducer. Experimental and theoretical results are presented which reveal that the use of a spatially modulated laser source produces significant narrow-banding of the detected ultrasound, compared with a single point or single line source case. Additionally, for a given line spacing, ultrasound of a particular frequency can be directed. Owing to the nature of the acoustic signals generated by each individual array element, superposition of several signals does not result in any energy directivity similar to that encountered in phase electromagnetic array antennas. While time or frequency feature enhancement may be obtained in a desired direction, in most cases the far field energy directivity pattern is simply the incoherent sum of the energy directivity of each array element.  相似文献   
66.
Yanqiu Zhang 《中国物理 B》2021,30(7):78704-078704
The hemispherical phased transducer maximizes the coverage of the skull and the ultrasonic energy per unit area of the skull is minimized, thereby reducing the risk of skull burns, but the transducer has a small focal area adjustment range, increasing the focal length of treatment is an urgent question for this type of transducer. In this paper, a three-dimensional high-intensity focused ultrasound (HIFU) transcranial propagation model is established based on the human head structure. The finite difference time domain (FDTD) is combined with the Westervelt acoustic wave nonlinear propagation equation and Penne's biological heat conduction equation for numerical simulation of the sound pressure field and temperature field. Forming a treatable focal area in a small-opening hemispherical transducer with a small amount of numerical simulation calculation focusing at a set position to determine the minimum partial excitation area ratio of focusing. And then, applying these preliminary results to a large-opening diameter hemispherical transducer and the temperature field formed by it or full excitation is studied. The results show that the focus area with the excitation area ratio of less than 22% moves forward to the transducer side when the excitation sound is formed. When the excitation area ratio is greater than or equal to 23%, it focuses at the set position. In the case of partial incentives, using 23% of the partial array, the adjustable range of the treatable focal area formed in the three-dimensional space is larger than that of the full excitation.  相似文献   
67.
Aiming at producing a reduced fat cheese (RFC) as an alternative to full-fat Panela cheese, a highly consumed fresh Mexican dairy product, thermosonication (TS) processes (24 kHz, 400 W nominal power, 2, 4 and 6 min; 50, 55 and 60 °C) were evaluated to treat WPC (80% protein) blended with reduced-fat milk (1 and 2% fat), which were later LTLT pasteurized. TS blends were compared in terms of their technological properties (water holding capacity-WPC, gel firmness- GF, color, pH and titratable acidity) with those of a regular full fat (3%) LTLT pasteurized milk used as a control. Afterwards, a regression analysis was carried out with the obtained data in order to select the most appropriate conditions for cheesemaking purposes (similar GF, higher WHC with respect to the control), minimize both fat content and TS treatment duration to minimize energy expenses. According to these restrictions, the selected conditions were 1.5% fat milk-WPC blend, TS treated at 60 °C for 120 s; 1% fat milk-WPC blend, TS treated at 50 °C for 120 s and 1% fat milk-WPC blend, 50 °C for 144 s, which allowed preparing low fat cheeses (LFCs). These TS treatments were applied in a larger scale to elaborate Panela-type LFCs comparing different technological properties (cheese yield, syneresis, water content, texture profile analysis, color and titratable acidity) with those of a full fat variety, at day 1 and during 14 days of refrigerated storage. Results showed similar texture profiles of LFC cheeses and full fat milk cheeses throughout their storage period with significant changes in composition parameters (higher moisture, protein and salt contents, with low fat percentages), syneresis, selected color parameters (hue, b*), with no observed changes in cheese yield, TA and pH during cheese storage. These promising results are encouraging to develop LFCs with no physicochemical or technological defects using novel processing techniques that may help reducing calorie consumption without compromising sensory acceptability.  相似文献   
68.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   
69.
Current sonochemical methods rely on spatially uncontrolled cavitation for radical species generation to promote chemical reactions. To improve radical generation, sonosensitizers have been demonstrated to be activated by cavitation-based light emission (sonoluminescence). Unfortunately, this process remains relatively inefficient compared to direct photocatalysis, due to the physical separation between cavitation event and sonosensitizing agent. In this study, we have synthesized nanostructured titanium dioxide particles to couple the source for cavitation within a photocatalytic site to create a sonophotocatalyst. In doing so, we demonstrate that site-controlled cavitation from the nanoparticles using pulsed ultrasound at reduced acoustic powers resulted in the sonochemical degradation methylene blue at rates nearly three orders of magnitude faster than other titanium dioxide-based nanoparticles by conventional methods. Sonochemical degradation was directly proportional to the measured cavitation produced by these sonophotocatalysts. Our work suggests that simple nanostructuring of current sonosensitizers to enable on-site cavitation greatly enhances sonochemical reaction rates.  相似文献   
70.
A solution (10%, w/v) of whey protein soluble aggregates (WPISA) was pretreated with high-intensity ultrasound (HUS, 20 kHz) for different durations (10–40 min) before incubation with transglutaminase (TGase) to investigate the effect of HUS on the structural, physicochemical, rheological, and gelation properties of TGase cross-linked WPISA. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that HUS increased the amounts of high-molecular-weight polymers/aggregates in WPISA after incubation with TGase. HUS significantly increased (P < 0.05) the degree of TGase-mediated cross-linking in WPISA, as demonstrated by a reduction in free amino group contents. HUS significantly increased (P < 0.05) the particle size, intrinsic fluorescence intensity, and surface hydrophobicity of TGase cross-linked WPISA, but had no significant impact (P > 0.05) on the zeta-potential or total free sulfhydryl group content of TGase cross-linked WPISA. The apparent viscosity and the consistency index of TGase cross-linked WPISA were significantly increased by HUS (P < 0.05), which indicated that HUS facilitated the formation of more high-molecular-weight polymers. HUS significantly increased (P < 0.05) the water holding capacity and gel strength of glucono-δ-lactone (GDL)-induced TGase cross-linked WPISA gels. The results indicated that HUS could be an efficient tool for modifying WPISA to improve its degree of TGase-mediated cross-linking, which would lead to improved rheological and gelation properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号