首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   53篇
  国内免费   12篇
化学   18篇
晶体学   1篇
力学   382篇
综合类   3篇
数学   89篇
物理学   227篇
  2024年   2篇
  2023年   8篇
  2022年   3篇
  2021年   15篇
  2020年   15篇
  2019年   11篇
  2018年   28篇
  2017年   22篇
  2016年   34篇
  2015年   28篇
  2014年   32篇
  2013年   84篇
  2012年   26篇
  2011年   42篇
  2010年   30篇
  2009年   35篇
  2008年   26篇
  2007年   45篇
  2006年   38篇
  2005年   36篇
  2004年   30篇
  2003年   19篇
  2002年   23篇
  2001年   14篇
  2000年   17篇
  1999年   15篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1957年   2篇
排序方式: 共有720条查询结果,搜索用时 515 毫秒
141.
142.
Rotating turbulence occurs extensively in nature and engineering circumstances. Meanwhile, understanding physical mechanisms of the rotating turbulence is important to the fundamental research of turbulence. The turbulent flow in rotating frames undergoes two kinds of Coriolis force effects. First, a secondary flow is induced in the case that there is a mean vorticity component perpendicular to the rotating axis. Second, there are augmenting or suppressing effects on the turbulence if there i…  相似文献   
143.
This work investigates a high‐order numerical method which is suitable for performing large‐eddy simulations, particularly those containing wall‐bounded regions which are considered on stretched curvilinear meshes. Spatial derivatives are represented by a sixth‐order compact approximation that is used in conjunction with a tenth‐order non‐dispersive filter. The scheme employs a time‐implicit approximately factored finite‐difference algorithm, and applies Newton‐like subiterations to achieve second‐order temporal and sixth‐order spatial accuracy. Both the Smagorinsky and dynamic subgrid‐scale stress models are incorporated in the computations, and are used for comparison along with simulations where no model is employed. Details of the method are summarized, and a series of classic validating computations are performed. These include the decay of compressible isotropic turbulence, turbulent channel flow, and the subsonic flow past a circular cylinder. For each of these cases, it was found that the method was robust and provided an accurate means of describing the flowfield, based upon comparisons with previous existing numerical results and experimental data. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   
144.
The analysis and improvement of an immersed boundary method (IBM) for simulating turbulent flows over complex geometries are presented. Direct forcing is employed. It consists in interpolating boundary conditions from the solid body to the Cartesian mesh on which the computation is performed. Lagrange and least squares high‐order interpolations are considered. The direct forcing IBM is implemented in an incompressible finite volume Navier–Stokes solver for direct numerical simulations (DNS) and large eddy simulations (LES) on staggered grids. An algorithm to identify the body and construct the interpolation schemes for arbitrarily complex geometries consisting of triangular elements is presented. A matrix stability analysis of both interpolation schemes demonstrates the superiority of least squares interpolation over Lagrange interpolation in terms of stability. Preservation of time and space accuracy of the original solver is proven with the laminar two‐dimensional Taylor–Couette flow. Finally, practicability of the method for simulating complex flows is demonstrated with the computation of the fully turbulent three‐dimensional flow in an air‐conditioning exhaust pipe. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
145.
We apply the phenomenology of homogeneous, isotropic turbulence to the family of approximate deconvolution models proposed by Stolz and Adams. In particular, we establish that the models themselves have an energy cascade with two asymptotically different inertial ranges. Delineation of these gives insight into the resolution requirements of using approximate deconvolution models. The approximate deconvolution model's energy balance contains both an enhanced energy dissipation and a modification to the model's kinetic energy. The modification of the model's kinetic energy induces a secondary energy cascade which accelerates scale truncation. The enhanced energy dissipation completes the scale truncation by reducing the model's micro-scale from the Kolmogorov micro-scale.  相似文献   
146.
新型大涡数值模拟亚格子模型及应用   总被引:5,自引:1,他引:4  
基于湍流大小尺度间动量输运的结构函数方程,提出了一种新的湍流大涡模型(LES)亚格子涡粘模式.新亚格子涡粘系数正比于纵向速度增量的扭率,它表征大小尺度湍流间的能量输运和耗散之比.新模式通过各向同性湍流直接数值模拟数据库的检验,并用于槽道湍流的大涡模拟计算,将所得结果与DNS结果进行了比较.  相似文献   
147.
This paper is concerned with the development of a new high‐order finite volume method for the numerical simulation of highly convective unsteady incompressible flows on non‐uniform grids. Specifically, both a high‐order fluxes integration and the implicit deconvolution of the volume‐averaged field are considered. This way, the numerical solution effectively stands for a fourth‐order approximation of the point‐wise one. Moreover, the procedure is developed in the framework of a projection method for the pressure–velocity decoupling, while originally deriving proper high‐order intermediate boundary conditions. The entire numerical procedure is discussed in detail, giving particular attention to the consistent discretization of the deconvolution operation. The present method is also cast in the framework of approximate deconvolution modelling for large‐eddy simulation. The overall high accuracy of the method, both in time and space, is demonstrated. Finally, as a model of real flow computation, a two‐dimensional time‐evolving mixing layer is simulated, with and without sub‐grid scales modelling. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
148.
The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a ‘high-lift’ and an ‘ultra high-lift’ turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process.In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in ‘ultra high-lift’ design when compared to the ‘high-lift’ design. Stronger ‘Klebanoff streaks’ are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles.The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake convects at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The ‘part-span’ Kelvin–Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging.  相似文献   
149.
This paper describes a complete framework to predict the behaviour of interacting non-spherical particles with large Stokes numbers in a turbulent flow. A summary of the rigid body dynamics of particles and particle collisions is presented in the framework of Quaternions. A particle-rough wall interaction model to describe the collisions between non-spherical particles and a rough wall is put forward as well. The framework is coupled with a DNS-LES approach to simulate the behaviour of horizontal turbulent channel flow with 5 differently shaped particles: a sphere, two types of ellipsoids, a disc, and a fibre. The drag and lift forces and the torque on the particles are computed from correlations which are derived using true DNS.The simulation results show that non-spherical particles tend to locally maximise the drag force, by aligning their longest axis perpendicular to the local flow direction. This phenomenon is further explained by performing resolved direct numerical simulations of an ellipsoid in a flow. These simulations show that the high pressure region on the acute sides of a non-spherical particle result in a torque if an axis of the non-spherical particle is not aligned with the flow. This torque is only zero if the axis of the particle is perpendicular to the local direction of the flow. Moreover, the particle is most stable when the longest axis is aligned perpendicular to the flow.The alignment of the longest axis of a non-spherical particle perpendicular to the local flow leads to non-spherical particles having a larger average velocity compared to spherical particles with the same equivalent diameter. It is also shown that disc-shaped particles flow in a more steady trajectory compared to elongated particles, such as elongated ellipsoids and fibres. This is related to the magnitude of the pressure gradient on the acute side of the non-spherical particles. Finally, it is shown that the effect of wall roughness affects non-spherical particles differently than spherical particles. Particularly, a collision of a non-spherical particle with a rough wall induces a significant amount of rotational energy, whereas a corresponding collision with a spherical particle results in mostly a change in translational motion.  相似文献   
150.
A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号