首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24294篇
  免费   2883篇
  国内免费   3321篇
化学   9291篇
晶体学   107篇
力学   2055篇
综合类   182篇
数学   7824篇
物理学   11039篇
  2024年   72篇
  2023年   282篇
  2022年   404篇
  2021年   600篇
  2020年   772篇
  2019年   709篇
  2018年   717篇
  2017年   804篇
  2016年   957篇
  2015年   857篇
  2014年   1256篇
  2013年   2089篇
  2012年   1340篇
  2011年   1613篇
  2010年   1262篇
  2009年   1646篇
  2008年   1673篇
  2007年   1730篇
  2006年   1440篇
  2005年   1224篇
  2004年   987篇
  2003年   1014篇
  2002年   934篇
  2001年   739篇
  2000年   747篇
  1999年   638篇
  1998年   578篇
  1997年   437篇
  1996年   304篇
  1995年   297篇
  1994年   245篇
  1993年   241篇
  1992年   208篇
  1991年   163篇
  1990年   162篇
  1989年   153篇
  1988年   133篇
  1987年   130篇
  1986年   99篇
  1985年   109篇
  1984年   103篇
  1983年   37篇
  1982年   78篇
  1981年   70篇
  1980年   58篇
  1979年   64篇
  1978年   55篇
  1977年   65篇
  1976年   58篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
毛赫南  王晓工 《物理化学学报》2022,38(4):2004025-52
氧化石墨烯(GO)片的基面和边缘上存在大量的含氧官能团,能很好地分散在水中,因而具有很好的加工性和广阔的应用前景。在较高浓度范围下,GO水分散液中存在着强烈的竞争性相互作用,从而对流变行为产生较大影响。在本文中,通过稳态、动态等流变实验以及理论分析,研究了pH值、温度和不同的有机溶剂对GO分散液流变行为的影响。结果表明,降低pH值、适当增加温度以及加入吡啶均可促进GO水分散液从粘弹性液体到凝胶态的转变。利用DLVO (Deryagin-Landau-Verwey-Overbeek)理论,探讨了GO片之间的范德华作用力以及双电层排斥作用的相互关系,及其对流变性能的影响。通过群体平衡模型(PBE)分析了GO分散液的屈服应力与体积分数的正相关关系。同时,通过蠕变和松弛实验发现,高浓度的GO分散液中结构变化及流变行为在很多方面与高聚物相似,利用Poyting-Thomson模型能较好地拟合其粘弹性行为。上述研究结果为深入研究复杂的GO分散体系提供理论支撑和实验依据。  相似文献   
992.
程琪  聂小娃  郭新闻 《分子催化》2022,36(2):145-161
采用密度泛函理论(DFT)计算研究了苯酚、邻甲酚、愈创木酚在不同结构Ru-Fe(211)表面上吸附活化性能和加氢脱氧反应路径.结果表明,Ru掺杂能促进H2分子在Fe(211)表面上解离,提高加氢脱氧反应速率.酚类在1Ru_(ads)-Fe(211)表面上吸附比在1Ru_(sub)-Fe(211)表面上更稳定,苯酚和邻甲酚脱羟基步骤能垒分别降低0.13和0.28 eV,有利于生成芳烃.愈创木酚在1Ru_(sub)-Fe(211)表面上加氢脱氧优势路径是先脱甲氧基生成苯酚,苯酚再加氢脱氧生成产物苯(速控步骤能垒1.16 eV);而在1Ru_(ads)-Fe(211)表面上愈创木酚先脱羟基再脱甲基生成苯酚的路径更具有动力学优势(速控步骤能垒1.21 eV).计算结果表明Ru掺杂方式影响Fe催化剂对酚反应分子的吸附稳定性以及加氢脱氧反应路径和性能.与1Ru掺杂Fe(211)催化剂相比,增加Ru原子数形成4Ru_(ads)-Fe(211),能够进一步提高酚类反应物的吸附强度,但导致加氢脱氧反应能垒升高.因此,在Fe催化剂上以表面吸附的形式掺杂少量贵金属Ru更利于酚类加氢脱氧生成芳烃.  相似文献   
993.
基于密度泛函理论(DFT)计算研究了O3在完整和具有氧空位的CuO(111)表面吸附的吸附位、吸附结构、吸附能和电子转移情况,比较了O3在完整表面和具有氧空位的表面分解的路径和能垒,分析了氧空位和表面吸附氧的生成机理。结果表明,在完整CuO表面,O3分子通过化学吸附或物理吸附表面结合,吸附能最高为-1.22eV(构型bri(2))。O3在具有氧空位的CuO表面均为化学吸附,吸附能最高为-2.95eV(构型ovbri(3)),显著高于完整表面的吸附能。O3吸附后,Cu吸附位的电荷密度减小,O3中的O原子附近的电荷密度显著增强,电荷从CuO表面转移到O3,并形成Cu-O离子键。O3分解后形成了超氧物种,提高了表面的氧化活性。在完整表面,以构型bri(2)为起始构型的路径反应能垒最低,为0.52eV;O2*在完整表面的脱附所需要的最低能量为0.42eV,形成氧空位的O2*脱附能为2.06eV。在具有氧空位的表面,O3分解的反应能垒为0.30eV(构型ovbri(1))和0.12eV(构型ovbri(3)),均低于完整表面的反应能垒;分解形成的O2*的最低脱附能也低于完整表面,为0.27eV。可见,氧空位的形成提高了吸附能,降低了反应能垒,使O3分子更容易吸附在CuO表面,并加快了O3的催化分解。  相似文献   
994.
张业文  杨青青  周策峰  李平  陈润锋 《化学进展》2022,34(10):2146-2158
热激活延迟荧光(Thermally activated delayed fluorescence, TADF)材料由于三线态激子可通过反系间窜越(Reverse intersystem crossing, RISC)转换为单线态激子,在有机发光二极管(Organic light-emitting diodes, OLEDs)中理论上可达到100%的激子利用率而被广泛关注。但实验上开发设计高性能TADF材料较为复杂且研究周期较长,理论研究可以从本质上建立材料结构-性能的关系,预测材料的性质并提供一定的分子设计策略。本文围绕高性能TADF材料的开发,从发光原理出发,系统阐述了分子的设计策略及光物理参数如材料单-三线态能级差(Single-triplet energy gap, ΔEST)、系间/反系间窜越速率、吸收/发射光谱、辐射/非辐射速率等的计算原理、计算方法和研究进展。最后我们探讨了TADF材料理论研究面临的机遇和挑战,通过对TADF材料的理论研究综述和研究前景的展望,期待吸引更多的研究工作者,推动该领域的发展和突破。  相似文献   
995.
This work chooses Cu/Fe single-atom catalysts(SACs) with weak/strong oxygen affinity to clarify the effect of dual-atom configuration on oxygen reduction reaction(ORR) performance based on density functional theory(DFT) calculations. The stability and ORR activity of single or dual Cu/Fe atomic sites anchored on nitrogen-doped graphene sheets(Cu-N4-C, Cu2-N6-C, Fe-N4-C, and Fe2-N6-C) are investigated, and the results indicate the dual-atom catalysts(Cu2-N6-C and Fe2-N6-C) are thermodynamically stable enough to avoid sintering and aggregation. Compared with single-atom active sites of Cu-N4-C, which show weak oxygen affinity and poor ORR performance with a limiting potential of 0.58 V, the dual-Cu active sites of Cu2-N6-C exhibit enhanced ORR activity with a limiting potential up to 0.87 V due to strengthened oxygen affinity. Interestingly, for Fe SACs with strong oxygen affinity, the DFT results show that the dual-Fe sites stabilize the two OH* ligands structure[Fe2(OH)2-N6-C], which act as the active sites during ORR process, resulting in greatly improved ORR performance with a limiting potential of 0.90 V. This study suggests that the dual-atom design is a potential strategy to improve the ORR performance of SACs, in which the activity of the single atom active sites is limited with weak or strong oxygen affinity.  相似文献   
996.
In a previous work [J. Chem. Phys. 140 , 174105 (2014)], we have shown that a mixed quantum classical (MQC) rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions. However, the method is based on the high temperature approximation of the hierarchical equation of motion (HEOM) with the Debye-Drude spectral density, and results in a multi-state Zusman type of equation. We now extend this theory to include quantum effects of the bath degrees of freedom. By writing the full HEOM into a multidimensional partial differential equation in phase space, we can define a new reaction coordinate, and the previous method can be generalized to the full quantum regime. The validity of the new method is demonstrated by using numerical examples, including the spin-Boson model, and the double well model for proton transfer reaction. The new method is found to resolve some key problems of the previous theory based on high temperature approximation, including possible numerical instability in long time simulation and wrong rate constant at low temperatures.  相似文献   
997.
OX\begin{document}$_2$\end{document} (X=halogen) molecules was studied theoretically. Calculation results show that delocalized \begin{document}$\pi_3^6$\end{document} bonds exist in their electronic structures and O atoms adopt the sp\begin{document}$^2$\end{document} type of hybridization, which violates the prediction of the valence shell electron pair repulsion theory of sp\begin{document}$^3$\end{document} type. Delocalization stabilization energy is proposed to measure the contribution of delocalized \begin{document}$\pi_3^6$\end{document} bond to energy decrease and proves to bring extra-stability to the molecule. These phenomena can be summarized as a kind of coordinating effect.  相似文献   
998.
The kinetics of U(IV) produced by hydrazine reduction of U(VI) with platinum as a catalyst in nitric acid media was studied to reveal the reaction mechanism and optimize the reaction process. Electron spin resonance (ESR) was used to determine the influence of nitric acid oxidation. The effects of nitric acid, hydrazine, U(VI) concentration, catalyst dosage and temperature on the reaction rate were also studied. In addition, the simulation of the reaction process was performed using density functional theory. The results show that the influence of oxidation on the main reaction is limited when the concentration of nitric acid is below 0.5 mol/L. The reaction kinetics equation below the concentration of 0.5 mol/L is found as: -dc(UO22+)/dt)=kc0.5323(UO22+)c0.2074(N2H5+)c-0.2009(H+). When the temperature is 50 ℃, and the solid/liquid ratio r is 0.0667 g/mL, the reaction kinetics constant is k=0.00199 (mol/L)0.4712/min. Between 20 ℃ and 80 ℃, the reaction rate gradually increases with the increase of temperature, and changes from chemically controlled to diffusion-controlled. The simulations of density functional theory give further insight into the influence of various factors on the reaction process, with which the reaction mechanisms are determined according to the reaction kinetics and the simulation results.  相似文献   
999.
The divergent behavior of C-H bond oxidations of aliphatic substrates compared to those of aromatic substrates shown in Gupta's experiment was mechanistically studied herein by means of density functional theory calculations. Our calculations reveal that such difference is caused by different reaction mechanisms between two kinds of substrates (the aliphatic cyclohexane, 2, 3-dimethylbutane and the aromatic toluene, ethylbenzene and cumene). For the aliphatic substrates, C-H oxidation by the oxidant Fe\begin{document}$^{\rm{V}}$\end{document}(O)(TAML) is a hydrogen atom transfer process; whereas for the aromatic substrates, C-H oxidation is a proton-coupled electron transfer (PCET) process with a proton transfer character on the transition state, that is, a proton-coupled electron transfer process holding a proton transfer-like transition state (PCET(PT)). This difference is caused by the strong \begin{document}$\pi$\end{document}-\begin{document}$\pi$\end{document} interactions between the tetra-anionic TAML ring and the phenyl ring of the aromatic substrates, which has a "pull" effect to make the electron transfer from substrates to the Fe=O moiety inefficient.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号