首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   2篇
  国内免费   4篇
化学   13篇
力学   4篇
数学   2篇
物理学   63篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   10篇
  2011年   16篇
  2010年   14篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1996年   2篇
  1982年   1篇
排序方式: 共有82条查询结果,搜索用时 830 毫秒
1.
Biocompatible, hydrophobic ferrofluids comprised of magnetite nanoparticles dispersed in polydimethylsiloxane show promise as materials for the treatment of retinal detachment. This paper focuses on the motion of hydrophobic ferrofluid droplets traveling through viscous aqueous media, whereby the movement is induced by gradients in external fields generated by small permanent magnets. A numerical method was utilized to predict the force on a spherical droplet, and then the calculated force was used to estimate the time required for the droplet to reach the permanent magnet. The calculated forces and travel times were verified experimentally.  相似文献   
2.
Both ferrofluidics and genetic algorithms are relatively new fields. Due to complex physical interactions, ferrofluidic topographies and assemblies have only been solved using finite time step, Lattice Boltzmann, and finite-element methods in very simple magnetic field configurations. In this paper, we show that it is possible (and highly advantageous) to employ genetic algorithms to solve for the fluid topographies, which can be extended to include more complex magnetic fields.  相似文献   
3.
In this paper, results of applying a non-uniform magnetic field on a ferrofluid (kerosene and 4 vol% Fe3O4 ) flow in a vertical tube have been reported. The hydrodynamics and thermal behavior of the flow are investigated numerically using the two phase mixture model and the control volume technique. Two positive and negative magnetic field gradients have been examined. Based on the obtained results the Nusselt number can be controlled externally using the magnetic field with different intensity and gradients. It is concluded that the magnetic field with negative gradient acts similar to Buoyancy force and augments the Nusselt number, while the magnetic field with positive gradient decreases it. Also with the negative gradient of the magnetic field, pumping power increases and vice versa for the positive gradient case.  相似文献   
4.
In this paper we present theoretical and simulation results on the structure factor of mono- and bidisperse ferrofluids with chain aggregates, both with and without an applied external magnetic field. Chain distribution is obtained by the density functional theory (DFT). The radial distribution function (RDF) is calculated directly on the basis of the chain distribution and Fourier transformed to calculate the structure factor. An extensive comparison of the theoretical predictions to the results of the molecular dynamics computer simulations is provided. The proposed combined approach allows to elucidate the connection between experimentally observed small angle neutron scattering (SANS) images and the ferrofluid microstructure.  相似文献   
5.
Ferrofluid spin-up flow is studied within a sphere subjected to a uniform rotating magnetic field from two surrounding spherical coils carrying sinusoidally varying currents at right angles and 90° phase difference. Ultrasound velocimetry measurements in a full sphere of ferrofluid shows no measureable flow. There is significant bulk flow in a partially filled sphere (1-14 mm/s) of ferrofluid or a finite height cylinder of ferrofluid with no cover (1-4 mm/s) placed in the spherical coil apparatus. The flow is due to free surface effects and the non-uniform magnetic field associated with the shape demagnetizing effects. Flow is also observed in the fully filled ferrofluid sphere (1-20 mm/s) when the field is made non-uniform by adding a permanent magnet or a DC or AC excited small solenoidal coil. This confirms that a non-uniform magnetic field or a non-uniform distribution of magnetization due to a non-uniform magnetic field are causes of spin-up flow in ferrofluids with no free surface, while tangential magnetic surface stress contributes to flow in the presence of a free surface.Recent work has fitted velocity flow measurements of ferrofluid filled finite height cylinders with no free surface, subjected to uniform rotating magnetic fields, neglecting the container shape effects which cause non-uniform demagnetizing fields, and resulting in much larger non-physical effective values of spin viscosity η′∼10−8−10−12 N s than those obtained from theoretical spin diffusion analysis where η′≤10−18 N s. COMSOL Multiphysics finite element computer simulations of spherical geometry in a uniform rotating magnetic field using non-physically large experimental fit values of spin viscosity η′∼10−8−10−12 N s with a zero spin-velocity boundary condition at the outer wall predicts measureable flow, while simulations setting spin viscosity to zero (η=0) results in negligible flow, in agreement with the ultrasound velocimetry measurements. COMSOL simulations also confirm that a non-uniform rotating magnetic field or a uniform rotating magnetic field with a non-uniform distribution of magnetization due to an external magnet or a current carrying coil can drive a measureable flow in an infinitely long ferrofluid cylinder with zero spin viscosity (η=0).  相似文献   
6.
V. Socoliuc  L.B. Popescu 《Physica A》2011,390(4):569-578
In this paper we develop a theoretical model for the magnetically induced optical anisotropy in dense magnetic colloids made of spherical and un-aggregated magnetic monodomain nanoparticles. Both dipole-field and dipole-dipole magnetic and electric interactions between the magnetic monodomain particles are taken into account in the Hamiltonian of the system. Using the pair correlation function in a colloidal suspension of magnetic nanoparticles developed by Ivanov and Kuznetsova (2001) [11], the complex dielectric constant of a magnetic colloid is modeled as a function of the light polarization direction, the magnetic field intensity and magnetic particle concentration and diameter. The two main features of the model are that, on the one hand, it predicts the possibility of magnetically induced optical anisotropy in dense magnetic colloids made of spherical and un-aggregated monodomain nanoparticles, and on the other hand, unlike the existing models for diluted samples, it predicts a non-linear dependence of dichroism and birefringence on magnetic particle concentration.  相似文献   
7.
8.
Non-porous magnetic polymer microspheres with a core-shell structure were prepared by a novel micro-suspension polymerization technique. A stable iron oxide ferrofluid was used to supply the magnetic core, and the polymeric shell was made of glycidyl methacrylate (GMA monomer) and ethylene dimethacrylate (cross-linker). In the preparation, polyvinyl alcohol was used as the stabilizer, and a lauryl alcohol mixture as the dispersant. The influence of various conditions such as aqueous phase volume, GMA and initiator amounts, reaction time and stirring speed on the character of the microspheres was investigated. The magnetic microspheres were then characterized briefly. The results indicate that the microspheres with active epoxy groups had a narrow size distribution range from 1 to 10 μm with a volume-weighted mean diameter of 4.5 μm. The saturation magnetization reached 19.9 emu/g with little coercivity and remanence.  相似文献   
9.
Imaging of micro- and nanofluidics is a challenge since the size of the channels is so small that the installment of additional optical and mechanical switches is very difficult. The size of the device and associated increase in viscous dissipation constitute another constraint. In response to these limitations, this work proposes and demonstrates the manipulation of light by adding a functional lens to control the light on demand. In the present work, this lens is realized by filling a hollow fiber with a colloid of superparamagnetic Fe3O4 nanoparticles. When the propagation of light is perpendicular to the magnetic field, this lens stretches the circular beam into a ribbon yielding a larger visible area. Potentially, one can apply a rotating magnetic field thus illuminating a larger spot size or creating other beam geometries. Such composite fibers might also be of value for Faraday isolation and other magneto-optic effects in optical fibers.  相似文献   
10.
Nanomagnetic particles have great potential in the biomedical applications like MRI contrast enhancement, magnetic separation, targeting delivery and hyperthermia. In this paper, we have explored the possibility of biomedical applications of [Fe1−xBxFe2O4, B=Mn, Co] ferrite. Superparamagnetic particles of substituted ferrites [Fe1−xBxFe2O4, B=Mn, Co (x=0–1)] and their fatty acid coated water base ferrofluids have been successfully prepared by co-precipitation technique using NH4OH/TMAH (Tetramethylammonium hydroxide) as base. In vitro cytocompatibility study of different magnetic fluids was done using HeLa (human cervical carcinoma) cell lines. Co2+-substituted ferrite systems (e.g. CoFe2O4) is more toxic than Mn2+-substituted ferrite systems (e.g. MnFe2O4, Fe0.6Mn0.4Fe2O4). The later is as cytocompatible as Fe3O4. Thus, Fe1−xMnxFe2O4 could be useful in biomedical applications like MRI contrast agent and hyperthermia treatment of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号