首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   47篇
  国内免费   16篇
化学   62篇
晶体学   12篇
综合类   1篇
物理学   377篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   11篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   72篇
  2008年   64篇
  2007年   51篇
  2006年   30篇
  2005年   8篇
  2004年   8篇
  2003年   22篇
  2002年   26篇
  2001年   18篇
  2000年   17篇
  1999年   19篇
  1998年   19篇
  1997年   7篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有452条查询结果,搜索用时 296 毫秒
61.
First principle calculations have been performed with the purpose to understand the peculiarities of the structural, elastic parameters and electronic properties and interatomic bonding for novel hexagonal carbide (W0.5Al0.5)C in comparison with binary phases WC and Al4C3. The geometries of all phases were optimized and their structural, elastic parameters and theoretical density were established. Besides, we have evaluated the formation energies (Eform) of W0.5Al0.5C for different possible preparation routes (namely for the reactions with the participation of simple substances (metallic W, Al and graphite, binary W or Al carbides and metallic Al and W, or binary W and Al carbides). The results show that the synthesis of the ternary carbide from simple substances is more favorable in comparison with the reactions with participation of W and Al carbides. Moreover, band structures, total and partial densities of states were obtained and analyzed systematically for (W0.5Al0.5)C, WC and Al4C3 phases in comparison with available theoretical and experimental data. The bonding picture in W0.5Al0.5C was described as a mixture of metallic, ionic and covalent contributions with the high anisotropy for the covalent W-C and Al-C bonds, where p-p like Al-C bonds become weaker than p-d like W-C bonds.  相似文献   
62.
The use of intraocular lenses (IOLs) is the most promising method to restore vision after cataract surgery. Several new materials, techniques, and patterns have been studied for forming and etching IOLs to improve their optical properties and reduce diffractive aberrations. This study is aimed at investigating the use of ultrashort laser pulses to ablate the surface of PMMA and intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were conducted using various polymer substrates (PMMA samples, hydrophobic acrylic IOL, yellow azo dye doped IOL, and hydrophilic acrylic IOL consist of 25% H2O). The irradiation was performed using 100 fs pulses of 800 nm radiation from a regeneratively amplified Ti:sapphire laser system. We investigated the ablation efficiency and the phenomenology of the ablated patterns by probing the ablation depth using a profilometer. The surface modification was examined using a high resolution optical microscope (IOLs) or atomic force microscope—AFM (PMMA samples). It was found that different polymers exhibited different ablation characteristics, a result that we attribute to the differing optical properties of the materials. In particular, it was observed that the topography of the ablation tracks created on the hydrophilic intraocular lenses was smoother in comparison to those created on the PMMA and hydrophobic lens. The yellow doped hydrophobic intraocular lenses show higher ablation efficiency than undoped hydrophobic acrylic lenses.  相似文献   
63.
64.
Attachment of one electron to 1,2-diBeX-benzene and 1,2-diZnX-benzene derivatives leads to the formation of stronger BeBe and Zn Zn interaction compared to the neutral one. This is reflected in the dramatic shortening of the BeBe and Zn Zn distance. The formation of these 2-center-1-electron bonds have also been confirmed by topological survey of electron density using quantum theory of atoms in molecules and electron localization function. The formation of these bonds is expected to render stability to these radical anions. These radical anions are stable toward electron detachment and computed bond dissociation energy values are also significant.  相似文献   
65.
钛/铜(Ti/Cu)作为ITER 第一壁Be/CuCrZr 热等静压连接中间过渡层,形成了多层中间金属相结构,容易在Ti/Cu 金属相之间产生裂纹等缺陷。采用CuCrZr 代替Be,经过与Be/CuCrZr 相同的热等静压工艺,制作了多个CuCrZr/Ti/Cu/CuCrZr 连接件,对Ti/Cu 连接接头进行深入分析。对连接件分别进行未退火、400℃和500℃ 退火处理,去应力退火后对接头强度和缺陷分布的影响进行了研究。研究结果表明,中间钛层的两侧都形成了三层Ti/Cu 扩散层,分别为Cu4Ti、CuTi 和CuTi2。纯铜侧的Cu4Ti 厚度比CuCrZr 侧的厚,使得裂纹几乎全部分布于铜侧的Cu4Ti 与CuTi 交界处,拉伸样品极易在此处发生脆性断裂。随着退火温度升高,裂纹的产生和扩展减少。  相似文献   
66.
The multi-layer computing model is developed to calculate wide-angle neutron spectra, in the range from0° to 180° with a 5° step, produced by bombarding a thick beryllium target with deuterons. The double-differential cross-sections(DDCSs) for the ~9 Be(d, xn) reaction are calculated using the TALYS-1.8 code. They are in agreement with the experimental data, and are much better than the PHITS-JQMD/GEM results at 15°, 30°, 45° and 60° neutron emission angles for deuteron energy of 10.0 MeV. In the TALYS-1.8 code, neutron contributions from direct reactions(break-up, stripping and knock-out reactions) are controlled by adjustable parameters, which describe the basic characteristics of typical direct reactions and control the relative intensity and the position of the ridgy hillock at the tail of DDCSs. It is found that the typical calculated wide-angle neutron spectra for different neutron emission angles and neutron angular distributions agree quite well with the experimental data for 13.5 MeV deuterons. The multi-layer computing model can reproduce the experimental data reasonably well by optimizing the adjustable parameters in the TALYS-1.8 code. Given the good agreement with the experimental data, the multi-layer computing model could provide better predictions of wide-angle neutron energy spectra, neutron angular distributions and neutron yields for the ~9 Be(d, xn) reaction neutron source.  相似文献   
67.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   
68.
Epitaxial Sb-doped SnO2 (0 0 1) thin film on a TiO2 (0 0 1) substrate was successfully prepared by laser-assisted metal organic deposition at room temperature. The effects of the precursor thin film and laser fluence on the resistivity, carrier concentration, and mobility of the Sb-doped SnO2 film were investigated. The resistivity of the Sb-doped SnO2 film prepared by direct irradiation to metal organic film is one order of magnitude lower than that of film prepared by irradiation to amorphous Sb-doped SnO2 film. From an analysis of Hall measurements, the difference between the resistivity of the Sb-doped SnO2 film prepared using the metal organic precursor film and that of amorphous precursor film appears to be caused by the mobility. Direct conversion of the metal organic compound by excimer laser irradiation was found to be effective for preparing epitaxial Sb-doped SnO2 film with low resistivity.  相似文献   
69.
18Ni-maraging steel has been entirely nanocrystallized by a series of processes including solution treatment, hot-rolling deformation, cold-drawn deformation and direct electric heating. The plasma nitriding of nanocrystallized 18Ni-maraging steel was carried out at 410 °C for 3 h and 6 h in a mixture gas of 20% N2 + 80% H2 with a pressure of 400 Pa. The surface phase constructions and nitrogen concentration profile in surface layer were analyzed using an X-ray diffractometer (XRD) and the glow discharge spectrometry (GDS), respectively. The results show that an about 2 μm thick compound layer (mono-phase γ′-Fe4N) can be produced on the top of the surface layer of nanocrystallized 18Ni-maraging steel plasma nitrided at 410 °C for 6 h. The measured hardness value of the nitrided surface is 11.6 GPa. More importantly, the γ′-Fe4N phase has better plasticity, i.e., its plastic deformation energy calculated from the load-displacement curve obtained by nano-indentation tester is close to that of nanocrystallized 18Ni-maraging steel. Additionally, the mechanical properties of γ′-Fe4N phase were also characterized by first-principles calculations. The calculated results indicate that the hardness value and the ratio of bulk to shear modulus (B/G) of the γ′-Fe4N phase are 10.15 GPa and 3.12 (>1.75), respectively. This demonstrates that the γ′-Fe4N phase has higher hardness and better ductility.  相似文献   
70.
Three-dimensional flow-through microchannels were fabricated inside bulk fused silica glass via ultrashort pulsed laser direct writing. The device fabrication sequence takes advantage of the nonlinear volumetric absorption in glass and the subsequent preferential chemical etching process. Optical waveguides were also written into the glass specimen and integrated with the fluidic conduits. Flow tests using both fluorescent particles and red blood cells (RBCs) were conducted on various three-dimensional channel configurations. Experiments showed the possibility for laser-induced cell processing inside the microchannels. To evaluate cytometer functionality, RBCs were detected inside the manufactured microchannel via both transmission and fluorescence probing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号