首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   388篇
  国内免费   45篇
化学   2081篇
晶体学   8篇
力学   1篇
物理学   34篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   33篇
  2020年   102篇
  2019年   63篇
  2018年   47篇
  2017年   53篇
  2016年   159篇
  2015年   129篇
  2014年   142篇
  2013年   169篇
  2012年   113篇
  2011年   114篇
  2010年   106篇
  2009年   85篇
  2008年   111篇
  2007年   118篇
  2006年   108篇
  2005年   95篇
  2004年   67篇
  2003年   80篇
  2002年   30篇
  2001年   25篇
  2000年   14篇
  1999年   23篇
  1998年   28篇
  1997年   20篇
  1996年   11篇
  1995年   14篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2124条查询结果,搜索用时 15 毫秒
61.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
62.
Saturn-like systems consisting of nanoscale rings and spheres are fascinating motifs in supramolecular chemistry. Several ring molecules are known to include spherical molecules at the center of the cavity via noncovalent attractive interactions. In this Minireview, we generalize the molecular design, the structural features, and the supramolecular chemistry of such “nano-Saturns”, which consist of monocyclic rings and fullerene spheres (mainly C60), on the basis of previous experimental and theoretical studies. Ring molecules are classified into three types (loop, belt, and disk) according to their shapes and possible interactions. Whereas typical belt-shaped rings tend to form tight complexes due to the wide contact area via π–π interactions, flat disk-shaped rings generally form weak complexes due to the narrow contact area mainly via CH–π interactions. In spite of the small association energies, disk-shaped rings are attractive because such rings can mimic the planet Saturn precisely as exemplified by an anthracene cyclic hexamer–C60 complex.  相似文献   
63.
《Tetrahedron letters》2019,60(52):151357
In this work, the host–guest interaction between calixpyridinium and the anionic anticancer drug methotrexate disodium was explored in water. Unexpectedly, an interesting anisotropic needle-like rather than an ordinary isotropic spherical supramolecular amphiphilic assembly was fabricated by the complexation of calixpyridinium with methotrexate disodium. It is the second anionic guest to be discovered to form the non-spherical supramolecular assembly upon complexation with calixpyridinium. This discovery implies the possibility to construct various topological nanostructures based on the host–guest interactions between calixpyridinium and the anionic drugs in the future. The resulting calixpyridinium–drug assemblies with different morphologies may have the diverse potentials to adjust the efficacies of anionic drugs.  相似文献   
64.
Cucurbit[7]uril (CB[7]) is known to bind strongly to hydrophilic amino saccharide guests with exceptional α‐anomer selectivities under aqueous conditions. Single‐crystal X‐ray crystallography and computational methods were used to elucidate the reason behind this interesting phenomenon. The crystal structures of protonated galactosamine (GalN) and glucosamine (GluN) complexes confirm the inclusion of α anomers inside CB[7] and disclose the details of the host–guest binding. Whereas computed gas‐phase structures agree with these crystal structures, gas‐phase binding free energies show preferences for the β‐anomer complexes over their α counterparts, in striking contrast to the experimental results under aqueous conditions. However, when the solvation effect is considered, the binding structures drastically change and the preference for the α anomers is recovered. The α anomers also tend to bind more tightly and leave less space in the CB[7] cavity toward inclusion of only one water molecule, whereas loosely bound β anomers leave more space toward accommodating two water molecules, with markedly different hydrogen‐bonding natures. Surprisingly, entropy seems to contribute significantly to both anomeric discrimination and binding. This suggests that of all the driving factors for the strong complexation of the hydrophilic amino saccharide guests, water mediation plays a crucial role in the anomer discrimination.  相似文献   
65.
Molecular or supramolecular level photoluminescence (PL) modulation combining chemical and photonic input/output signals together in an integrated system can provide potential high-density data memorizing and process functions intended for miniaturized devices and machines. Herein, a PL-responsive supramolecular coordination cage has been demonstrated for complex interactions with redox-active guests. PL signals of the cage can be switched and modulated by adding or retracting Fc derivatives or converting TTF into different oxidation states through chemical or photochemical pathways. As a result, reversible or stepwise PL responses are displayed by these host–guest systems because of the occurrence of photoinduced electron-transfer (PET) or fluorescence resonance energy transfer (FREnT) processes, providing unique nanodevice models bearing off/on logic gates or memristor-like sequential memory and Boolean operation functions.  相似文献   
66.
67.
68.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   
69.
The design of porous materials for the recognition of multiple hydrocarbons is highly desirable for the energy-efficient separation and recognition of chemical feedstock. Herein, three new iso-structural porous discrete metal–organic cages of formula {[Pd3(NiPr)3PO]4(R-AN)6} (R-AN=anilate linkers) for the selective recognition of substituted aromatic hydrocarbons are reported. The tetrahedral cages 1 , 2 , and 3 containing anilate, chloranilate, and bromanilate linkers exhibited selective encapsulation of mesitylene, o-xylene, and p-xylene, respectively, over other analogous aromatic hydrocarbons. These selective encapsulations were driven by the variations in the portal diameters present at each of these cages and their interactions with the hydrocarbon guests. These observations are supported by mass spectrometry, NMR studies, and theoretical binding-energy calculations.  相似文献   
70.
The effects of solvent and temperature on the complexation of adamantyl mannoside with β-cyclodextrin and 6-O-monotosyl-6-deoxy-β-cyclodextrin were explored experimentally and by means of molecular dynamics simulations. Efficient binding was observed only in hydrogen-bonded solvents, which indicated solvophobically driven complexation. The stability of the inclusion complex was considerably higher in aqueous media. A pronounced temperature dependence of ΔrH and ΔrS, resulting in perfect enthalpy–entropy compensation, was observed in water. The complexation thermodynamics was in line with classical rationale for the hydrophobic effect at lower temperatures and the nonclassical explanation at higher temperatures. This finding linked cyclodextrin complexation thermodynamics with insights regarding the effect of temperature on the hydration water structure. The complexation enthalpies and entropies were weakly dependent on temperature in organic media. The signs of ΔrH and ΔrS were in accordance with the nonclassical hydrophobic (solvophobic) effect. The structures of the optimized product corresponded to those deduced spectroscopically, and the calculated and experimentally obtained values of ΔrG were in very good agreement. This investigation clearly demonstrated that solvophobically driven formation of cyclodextrin complexes could be anticipated in structured solvents in general. However, unlike in water, adamantane and the host cavity behaved solely as structure breakers in the organic media explored so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号