首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18635篇
  免费   7025篇
  国内免费   4999篇
化学   5708篇
晶体学   258篇
力学   2088篇
综合类   763篇
数学   4901篇
物理学   16941篇
  2024年   201篇
  2023年   629篇
  2022年   678篇
  2021年   787篇
  2020年   544篇
  2019年   701篇
  2018年   519篇
  2017年   755篇
  2016年   731篇
  2015年   831篇
  2014年   1589篇
  2013年   1224篇
  2012年   1194篇
  2011年   1386篇
  2010年   1440篇
  2009年   1547篇
  2008年   1610篇
  2007年   1351篇
  2006年   1449篇
  2005年   1283篇
  2004年   1330篇
  2003年   1099篇
  2002年   1032篇
  2001年   860篇
  2000年   778篇
  1999年   680篇
  1998年   581篇
  1997年   621篇
  1996年   557篇
  1995年   498篇
  1994年   381篇
  1993年   298篇
  1992年   363篇
  1991年   329篇
  1990年   279篇
  1989年   286篇
  1988年   84篇
  1987年   71篇
  1986年   24篇
  1985年   12篇
  1984年   11篇
  1983年   13篇
  1982年   14篇
  1980年   4篇
  1979年   1篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
目的对气相色谱-质谱联用仪法测定橡胶制品中多环芳烃(蒽)含量不确定度进行评定,确定影响不确定度的关键因素。方法依据《ZEK01.4-2008 GS认证过程中PAHs的测试和验证》,使用气相色谱-质谱联用仪法测定橡胶制品中多环芳烃(蒽)含量,并对结果的不确定度进行评定,分析影响测量不确定度的各个因素,对各个分量进行计算和合成。结果扩展不确定度U=5.7 mg/kg,置信概率95%。结论该实验的不确定度主要影响因素是曲线校准。  相似文献   
992.
邻菲啰啉光度法常用于Fe(Ⅱ)测定,但受到试样中Fe(Ⅲ)对测定的影响,因此不能直接用于生物浸出样品中Fe(Ⅱ)和Fe(Ⅲ)的同时测定.为此,基于Fe(Ⅱ)邻菲啰啉特征吸收曲线以及混合铁中Fe(Ⅲ)对Fe(Ⅱ)测定的线性影响关系,建立了基于Fe(Ⅱ)和全铁同时测定Fe(Ⅱ)和Fe(Ⅲ)的计算光度法,并研究了生物浸出样品中典型金属离子(Cu2+、Ni2+、Cd2+、Co2+)以及试样溶解与储放对测定的影响.方法可准确地测定含铁次生矿物和生物浸出液中铁价态组成,应用于生物浸出矿渣、细胞表面中常量或微量的Fe(Ⅱ)和Fe(Ⅲ)组成分析,具有简便快速的特点.  相似文献   
993.
通过制作多氯萘(PCNs)在商品多层硅胶柱上的流出曲线、优化气相色谱质谱参数和利用三重四级杆质谱的多重反应监测模式,应用氘代一氯萘#2作为一氯和二氯代萘的定量内标,建立了基于DB-5MS和Rt-βDEXcst两根色谱柱的同位素稀释测定土壤和沉积物中多氯萘的分析方法,实现了两种高毒性六氯代萘#66和#67的基线分离。18种多氯萘同类物校正曲线在1.0~240μg/L浓度范围的相对响应因子为0.70~5.45,相对标准偏差小于18.5%。方法检出限在0.014~0.858μg/L之间,定量限在0.048~2.862μg/L之间。30 m的Rt-βDEXcst色谱柱方法效果优于60 m的DB-5MS色谱柱,但前者耗时较长。实际样品分析表明,7种PCNs回收率标记物,除一氯代萘约为6%外,其余均大于28%。测试土壤和沉积物样品中以低氯代萘为主。  相似文献   
994.
在线固相萃取-高效液相色谱法测定水体中的多环芳烃   总被引:1,自引:0,他引:1  
陈静  戴振宇  许群  张祥民 《分析化学》2014,(12):1785-1790
建立了在线固相萃取-液相色谱测定水体残留的多环芳烃的方法,用于测定自来水中的20种多环芳烃( PAHs)。直接进样1 mL经过过滤的水体样品,其中的被测组分富集在SPE柱( Acclaim PA II,50 mm×4.6 mm,3μm)上,在线完成净化和萃取富集;再通过阀切换将它们转移至分析流路,在Hypersil Green PAH色谱柱(150 mm ×3 mm,3μm)上分离检测。在线固相萃取流路以水和乙腈为流动相,0.4和0.6 mL/min流速梯度富集/萃取和洗脱;分析流路亦以水和乙腈为流动相,0.8 mL/min流速梯度洗脱,采用紫外254 nm检测无荧光效应的苊烯和弱荧光效应的萘,其它的多环芳烃化合物则于不同的荧光检测通道里,在其对应的最大激发/发射波长下灵敏测定。整个分析流程32 min即可完成。20种PAHs的保留时间的相对标准偏差均小于0.2%,色谱峰面积的相对标准偏差均小于1.3%(n=7);在3个浓度数量级范围内峰面积与进样质量浓度的线性相关系数均大于0.9910,0.05μg/L的自来水加标样品的回收率为57%~140%,5μg/L的自来水加标样品的回收率为85%~116%;多数有荧光响应的PAHs的方法检出限均小于0.02μg/L (S/N=3)。  相似文献   
995.
本书共分为8章,主要按照多酸的结构类型将配合物划分为八大类:Keggin型多酸基功能配合物、Wells-Dawson型多酸基功能配合物、Lindqvist型多酸基功能配合物、Anderson型多酸基功能配合物、多钼酸盐基功能配合物、多钨酸盐基功能配合物、多钒酸盐基功能配合物、P2Mo5和P4Mo6基功能配合物。比较系统地介绍了每种多酸基功能配合物的结构特点和合成方法,总结了合成规律,并有选择性地介绍了各类多酸基功能配合物的一些代表性性质。  相似文献   
996.
《分析化学》2014,(4):578
2014年3月14日,北京——安捷伦科技公司(纽约证交所:A)宣布推出1260 Infinity多检测器Bio-SEC解决方案,该解决方案是整个Infinity液相色谱系统系列中的最新创新成果。新一代体积排阻色谱(SEC)系统具有先进的光散射检测功能、完全生物惰性的仪器、高分离度的色谱柱以及直观的软件。这些特性将素有"蛋白质聚集体分析的黄金标准"之称的SEC的分析速度、灵敏度以及重现性推向了全新的水平。  相似文献   
997.
周喜  葛鑫  唐荣芝  陈彤  王公应 《催化学报》2014,35(4):481-489
制备了表面修饰多壁碳纳米管负载TiO2的催化剂,并将其应用于碳酸二甲酯与苯酚的酯交换反应. 采用X射线电子能谱、透射电子显微镜、低温N2吸附-脱附和X射线衍射等对催化剂进行了表征. 结果表明,以低浓度的氨水(0.4%)代替去离子水作为沉淀剂时,制备的催化剂显示出更好的催化活性、分离性与重复使用性. 考察了TiO2负载量、催化剂用量及反应时间对反应性能的影响. 在最佳反应条件下,苯酚转化率为42.5%,碳酸甲苯酯与碳酸二苯酯的总选择性达到99.9%以上. 经过4次重复使用后,催化剂的活性略有下降.  相似文献   
998.
通过对仪器参数、质谱干扰、Se同位素选择、NaBH4浓度、样品酸度、Se?还原条件及氢化反应干扰的评估和优化,建立了自制连续流动氢化物发生装置与扇形磁场电感耦合等离子体质谱联用测定天然水中无机硒价态的分析方法,克服了天然水中多种元素对氢化反应的干扰,解决了不同介质样品中Se?还原率保持95%以上时间短的问题。方法检出限为0.002μg/L,灵敏度为215378 cps/(μg/L),优于同类方法,测定河水和海水中Se?和Se?精密度小于4%,加标回收率在97%~103%之间,可应用于准确测定海水、河口区半咸水、河水等天然水中Se?和Se?浓度。  相似文献   
999.
采用密度泛函理论UB3LYP方法对Co+在三重态及五重态势能面上催化N2O与C2H6进行循环反应的两态反应机理进行了研究. 运用Harvery方法优化了两自旋态势能面5个最低能量交叉点(MECP),计算了MECP处自旋-轨道耦合作用. 采用Landau-Zener公式计算了自旋翻转处的系间窜越几率,各MECP处均可发生有效系间窜越. 通过应用Kozuch提出的能量跨度模型,Co+催化N2O与C2H6在298K下反应生成CH3CHO时有最大的TOF值3.35×10-21 s-1.  相似文献   
1000.
吴自力 《催化学报》2014,35(10):1591-1608
探究负载金属氧化物的结构是确立催化剂结构和催化性能之间相互关系的首要条件. 在众多表征技术中,多波长拉曼光谱结合了共振拉曼和由不同波长激发的非共振拉曼,不仅在识别负载金属氧化物团簇的结构,而且在定量方面已经成为强有力的工具. 本文以两个负载氧化钒体系(VOx/SiO2,VOx/CeO2)为例,阐述了如何利用该技术研究活性氧化物团簇的多相结构,并理解氧化物团簇和载体之间复杂的相互作用. 由多波长拉曼光谱得到的定性和定量信息能为设计更有效的负载金属氧化物催化剂提供基本的依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号