首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   247篇
  国内免费   37篇
化学   99篇
晶体学   2篇
力学   150篇
综合类   8篇
数学   59篇
物理学   555篇
  2024年   12篇
  2023年   40篇
  2022年   38篇
  2021年   39篇
  2020年   9篇
  2019年   35篇
  2018年   26篇
  2017年   32篇
  2016年   28篇
  2015年   28篇
  2014年   45篇
  2013年   21篇
  2012年   43篇
  2011年   37篇
  2010年   34篇
  2009年   33篇
  2008年   47篇
  2007年   36篇
  2006年   22篇
  2005年   16篇
  2004年   24篇
  2003年   15篇
  2002年   27篇
  2001年   22篇
  2000年   18篇
  1999年   20篇
  1998年   12篇
  1997年   10篇
  1996年   6篇
  1995年   8篇
  1994年   12篇
  1993年   7篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
排序方式: 共有873条查询结果,搜索用时 218 毫秒
51.
建立了铀颗粒物中铀全同位素比值的分析方法,采用双面胶带装载铀颗粒物样品,优化激光烧蚀-多接收电感耦合等离子体质谱的运行参数,用标准样品交叉法校正质量分馏和探测器检测效率,测定了粒径几十微米的铀标准物质CRM124-1、GBW04234和GBW04238中铀全同位素比值.本方法对铀颗粒物中235U/238U、234 U/235U和236 U/235U测量的相对实验标准不确定度分别小于0.050%,1.7%和1.8%,测量结果与参考值在不确定度范围内符合.研究表明,本方法可快速、准确、高精度地测定铀颗粒物中铀全同位素比值.  相似文献   
52.
运用激波管风洞在R_(e∞/m=3×10 ̄7,M_∞=0.732-0.817范围内,在厚度比为12%的圆弧翼型半模型和厚度比为14%的超临界翼型半模型上,对被动控制现象及其若干规律进行了实验研究。结果表明,不同空腔深度的开孔壁和导管连通壁均可对壁面激波与边界层的相互作用实现被动控制,使得沿以上两种模型表面的马赫数峰值、逆压力梯度和激波强度明显减小。这对于飞行器将起到减阻作用,如将这一原理和方法用于超、跨声速压气机内激波与边界层相互作用的控制,将提高压气机的效率和工作的稳定性。  相似文献   
53.
俞鸿儒  李斌  陈宏 《力学进展》2007,37(3):472-476
在高超声速飞行条件下, 流入冲压发动机燃烧室并降至低速的空气温度, 随着飞行马赫数增 加升得愈来愈高. 燃料与高温空气混合燃烧释放的化学能将部分转化为解离能. 这些解离能 在长度受限的尾喷管中难以充分复合形成推力, 使冲压发动机性能随飞行马赫数增大而急剧 下降. 导致冲压发动机不适应高超声速飞行器的推进要求. 将此定名为``高超声障'. 半个 世纪以来, 广泛采用``超声速燃烧'降低流入燃烧室的空气温度来克服这种障碍. 虽已取得 不少进展, 然而关键性难点仍需继续攻克. 为了多途径促进吸气推进高超声速飞行的实现, 提出克服``高超声障'的另一种思路:保持现有冲压发动机吸气与燃烧方式, 通过催化促进 燃气解离组分在尾喷管膨胀过程中的复合, 增大冲压发动机的推力, 达到满足高超声速飞行 器的推进要求.  相似文献   
54.
瞿谱波  关小伟  张振荣  王晟  李国华  叶景峰  胡志云 《物理学报》2015,64(12):123301-123301
报道了激光诱导热光栅光谱测温技术的研究. 通过两束相干交叉的脉冲抽运光, 在NO2/N2混合气中诱导出热光栅, 一束满足布拉格散射条件的连续探测光在交叉区域激励出相干的热光栅信号, 经过空间和光谱滤波的信号光由光电倍增管探测, 并由数字示波器显示和存储. 该信号携带了丰富的流场信息, 通过频域分析, 对气体的温度进行了测量, 热光栅光谱技术测量的温度与热电偶温度符合得很好. 同时还利用热光栅光谱技术进行了气体声速的直接测量, 在一定的温度范围内, 测量结果与理论曲线基本一致, 显示了该技术具有较高的测量精度与多参数同时测量的能力. 对影响信号波形的因素进行了分析, 结果表明, 热光栅光谱测温技术在高压强环境下应用具有独特的优势, 是一种应用前景广阔的激光燃烧诊断技术.  相似文献   
55.
张颖  王升  郑雄  何茂刚 《物理学报》2015,64(3):37801-037801
为了克服共振干涉法在液体的热力学声速和高频声速测量方面精度不高的问题, 本文建立了一种基于自发布里渊散射原理的测定液体声速的实验装置. 利用法布里-珀罗干涉仪对散射光进行扫描滤波, 数据采集卡结合光子计数器对散射光进行探测, 设计了一种散射光信息采集分析方法. 该实验方法有效的解决了传统布里渊散射方法中信号失真的问题, 显著地提升了液体声速测量精度. 对308.6–906.2 MHz内298.15 K饱和液相CCl4声速进行了测量, 测量结果与文献值具有较好一致性. 利用法布里-珀罗干涉仪周期性扫描的滤波原理, 通过在测量得到的布里渊频移上加减整数倍个自由波谱区, 得到了更大频率的波谱信息, 进而设计一种测定介质高频声速的方法. 对CCl4在5406.1–5521.0 MHz频段内的声速进行了测量. 实验结果显示, CCl4的热力学声速随频率无明显变化, 而高频声速随频率的增大呈增大趋势且远大于热力学声速, 证实CCl4具有色散现象.  相似文献   
56.
建立了微波消解-电感耦舍等离子体质谱(ICP.MS)法同时测定原油及自然风化后原油中的V、Cr、Mn、Fe、Ni、zn、Mo、Ba等11种微量金属元素的方法.结果表明,11种微量金属元素的检出限为0.0056~0.8729μg/g,线性关系良好,相关系数r≥0.9995;相对标准偏差(RSD)<5.0%.经过30d风化...  相似文献   
57.
蚜虫是棉花的主要害虫之一,我国棉花产量每年因蚜虫危害造成的损失高达5%~10%。田块尺度的棉花蚜害空间分布监测可以辅助精准定量施药,减少环境污染。利用无人机搭载成像光谱仪获取的“图谱合一”的遥感数据因其具有分辨率高、时效性高、成本低等优势,可为作物病虫害监测提供了重要数据源。比值导数法模型简洁,运行效率高,结果精确,可以有效的应用于遥感反射率光谱解混处理,提取对目标信息较为敏感的波段,为构建虫害监测模型提供了有效的手段。因此本研究选择棉花典型生产区新疆库尔勒地区为实验区,开展以下工作: (1)以低空无人机搭载成像光谱仪获取棉花蕾期冠层成像光谱影像,结合地面调查数据,获取76个样点光谱数据及蚜害严重度(包含健康植株16个,蚜害严重度1~4级每级选取15个);(2)分析不同蚜害严重度棉花冠层光谱的特征,并利用比值导数法筛选出对蚜害胁迫敏感的光谱波段,分别为514,566和698 nm波段; (3)构建基于三个敏感波段的光谱反射率、比值导数光谱值的一元线性回归和偏最小二乘法的蚜害严重度估测模型。结果表明:(1)蚜害对棉花冠层的光谱反射率有显著影响。棉株受蚜害胁迫越严重,其在可见光区域的反射率越高,近红外波段反射率越低,发生红边区域“蓝移”;(2)比值导数法可有效提取蚜害棉花冠层光谱敏感波段,所筛选的514,566和698 nm三个波段与相关系数法所筛选的敏感波段一致;(3)利用敏感波段比值导数光谱值所构建的蚜害严重度估测模型精度优于敏感波段光谱反射率所构建的模型, 其中698 nm波段构建的模型精度最佳(R2=0.597, RMSE=0.91); (4)三个敏感波段的比值导数光谱值所构建的偏最小二乘多元回归模型精度优于单个波段比值导数光谱值所构建的模型(R2=0.612, RMSE=0.89);(5)基于比值导数法的棉花蚜害无人机成像光谱监测模型可以获取田块尺度的不同严重度蚜害空间分布图,对于精准定量施药有重要的指示意义。  相似文献   
58.
本文对正项级数的比较审敛法与比值审敛法在理论上进行了一些探讨,作了某些推广,建立了一些在应用上更加方便,更加广泛的正项级数审敛法。  相似文献   
59.
本文给出了用脉冲回波迭加法测声速时,超声衍射、声波在界面上反射、样品反射面间不平行产生的系统误差的修正公式和修正方法.  相似文献   
60.
1.引言本文考虑介质声速和密度的同时反演问题.利用脉冲平面波从不同的两个方向探测[1-5],得到两组对应于不同入射角的表面响应信息,再由这两组响应信息来同时识别介质的声速和密度.关于介质声速和密度的同时反演,Coen[9-10]利用点源数据将问题转化为Schr6dinger方程的势函数反演.Howardl3]采用脉冲平面波探测,归结成一个向量MarchenkO积分方程.然而,这些方法都涉及求解Marchenko(gGelfdnd-Levitan)积分方程,不易在计算机上实现.关于介质参数的反演,张关泉作了不少工作【‘一句.其中在文献【司中对声速和密度的…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号