首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2266篇
  免费   666篇
  国内免费   829篇
化学   1408篇
晶体学   77篇
力学   642篇
综合类   69篇
数学   87篇
物理学   1478篇
  2024年   24篇
  2023年   102篇
  2022年   121篇
  2021年   128篇
  2020年   78篇
  2019年   136篇
  2018年   73篇
  2017年   117篇
  2016年   118篇
  2015年   130篇
  2014年   299篇
  2013年   176篇
  2012年   176篇
  2011年   216篇
  2010年   185篇
  2009年   200篇
  2008年   234篇
  2007年   200篇
  2006年   189篇
  2005年   163篇
  2004年   164篇
  2003年   120篇
  2002年   63篇
  2001年   66篇
  2000年   62篇
  1999年   44篇
  1998年   29篇
  1997年   35篇
  1996年   20篇
  1995年   21篇
  1994年   20篇
  1993年   9篇
  1992年   10篇
  1991年   9篇
  1990年   12篇
  1989年   6篇
  1988年   3篇
  1985年   3篇
排序方式: 共有3761条查询结果,搜索用时 15 毫秒
71.
纳米银掺杂二氧化硅复合颗粒的制备及表征   总被引:2,自引:0,他引:2  
0引言金属纳米颗粒因其粒子尺寸小(1 ̄100nm),比表面积大,表面原子数多,表面能和表面张力随粒径的下降急剧增大而具有量子尺寸效应[1]、小尺寸效应[2]、表面效应[3]及宏观量子隧道效应[4]等,从而出现了不同于常规固体的新奇特性,如:光学性质、磁性质以及电磁学性质[5],使其在催化、信息存储及非线性光学等领域展示了广阔的应用前景[6]。虽然制备金属纳米颗粒的方法有很多[6],但是由于纳米尺寸的金属颗粒具有较高的表面能,容易发生聚集,所以如何保持其稳定性依旧是比较困难的问题。随着纳米科技的发展,人们正尝试用各种方法来解决这个问题:如…  相似文献   
72.
铟锡氧化物(ITO)纳米颗粒的制备及表征   总被引:3,自引:0,他引:3       下载免费PDF全文
以金属In和SnCl4·5H2O为主要原料,加入保护剂PVP,利用化学共沉淀法合成了球形的铟锡氧化物(ITO)纳米颗粒。分别对PVP的用量、溶液的pH值、热处理温度等因素对ITO纳米颗粒粒径的影响进行了分析。并且借助透射电镜(TEM)、X射线衍射(XRD)对所合成的ITO纳米颗粒进行了表征。XRD分析说明本文合成了金刚砂型结构的铟锡氧化物纳米颗粒,并且其晶型结构随着热处理温度的升高而转变为铁锰矿型。  相似文献   
73.
基于SnO2为修饰层的Au-Pt / SnO2 / Au复合电极研究   总被引:1,自引:0,他引:1  
用真空镀膜法在Au电极上沉积SnO2薄膜,在HAuCl4和H2PtCl4的混合溶液中利用直接还原法,将Au-Pt双金属纳米颗粒组装在SnO2 / Au电极上,得到Au-Pt / SnO2 / Au复合电极。采用SEM、TEM、XPS及CV曲线测定对Au-Pt / SnO2 / Au复合电极进行了表征。结果表明:复合电极上双金属纳米颗粒分布均匀,粒子粒径约为25 nm左右。SnO2作为修饰层以配位键与双金属纳米粒子结合。Au-Pt / SnO2 / Au复合电极具有良好对甲醇氧化的电化学性能。  相似文献   
74.
二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应   总被引:3,自引:1,他引:3  
分别将二氧化硅纳米颗粒(SiNPs)与微米颗粒(SiMPs)作为固定化载体, 选择多聚酶牛肝过氧化氢酶(CAT)和单体酶辣根过氧化物酶(HRP)作为酶模型, 通过考察酶固定化后在酶活回收率、热稳定性、 酶促反应最适温度以及酶在水-有机溶剂混合体系中催化能力的变化, 对载体与酶所产生的生物效应差异进行了系统研究. 酶活回收率结果表明, SiNPs显示出比SiMPs优越的对酶无选择性的高生物亲和性, 而SiMPs则能使固定于其上的酶热稳定性大幅度提高, 且二者都能使固定化酶在有机相中的稳定性得到明显增强. 但酶促反应最适温度的变化结果表明, 对不同类型的酶所产生的生物效应则表现出无规律性.  相似文献   
75.
单分散、小粒径金纳米颗粒的形貌控制增长   总被引:3,自引:0,他引:3  
利用种子生长法合成了形状规则、尺寸单一的形状不同金纳米颗粒. 其中立方体纳米颗粒的边长为33±2 nm, 它是在十六烷基三甲基溴化胺(CTAB)存在的条件下, 在种子的表面上用弱还原剂——抗坏血酸还原而成的. 在这个体系中, 表面活性剂CTAB既作为保护剂又作为颗粒成长的导向剂. 用UV-vis, TEM, XRD对纳米颗粒的光学性质、几何形状、纳米颗粒的单层膜概貌以及纳米颗粒的晶体结构作了表征. 考察了种子生长的时间、种子的量、抗坏血酸的量对生成纳米颗粒形状的影响.  相似文献   
76.
为了研究生物质(硬木)热解过程中颗粒内部的二次反应,对流化床环境下单颗粒生物质热解模型进行了求解。计算针对典型大颗粒和典型小颗粒在流化床反应器反应条件下的热解过程,对不同大小颗粒内部各种产物的生成、消耗、积累以及逃逸行为进行了定量描述。计算结果表明:对于直径为2mm的小颗粒,颗粒内二次裂解的份额可以忽略,但是对于直径10mm的大颗粒,热争过程中有超过20%的一次焦油参加了颗粒内部二次反应,颗粒内二次裂解显著地改变了热解产物分布,改变了热解产物的品质。  相似文献   
77.
将制备的铁氰酸镍纳米颗粒(NiNP)与多壁碳纳米管(CNT)混合, 分散于壳聚糖溶液中, 形成一种新的纳米复合成分(NiNP-CNT-CHIT), 将其修饰在玻碳电极表面. 新复合膜体现了NiNP和CNT之间的协同作用, 由于CNT的良好的传递电子性能, 促使NiNP催化氧化还原能力有了较大的提高. 此NiNP-CNT-CHIT复合膜修饰的玻碳电极在较低电位下对过氧化氢具有良好的电催化性能, 与NiNP-CHIT膜比较, 测定H2O2的灵敏度增大了50倍. 通过戊二醛在电极表面固定葡萄糖氧化酶制备了一种新的葡萄糖传感器. 该传感器在-0.2 V下对葡萄糖的线性范围为0.05~10 mmol/L, 检测下限为10 μmol/L.  相似文献   
78.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   
79.
抗活化血小板单克隆抗体与尿激酶杂合分子的纤溶作用   总被引:3,自引:0,他引:3  
用双功能团试剂将尿激酶(UK)B链和抗人活化血小板α-颗粒膜蛋白GMP-140单克隆抗体(SZ-51)的Fab片段共价偶联。偶联的杂合分子UK-SZ-51保留了原抗体的结合专一性,它在体外的溶栓效率较尿激酶提高约5倍,其溶栓作用对血浆中纤维蛋白原的含量无影响。  相似文献   
80.
赵磊李以圭  仲崇立 《中国化学》2007,25(12):1904-1910
The polymer reference interaction site model (PRISM) integral equation theory was used to describe the structure and thermodynamic properties of atactic polystyrene (aPS) melt, in which the monomer of aPS is represented with an eight-site model to characterize its microstructure. The intramolecular structure factors needed in the PRISM calculations were obtained from single chain MD simulations. The calculated results indicate that the results by the integral equation method agrees well with experiments, and can reflect the fine microscopic structure of real aPS melt. This work shows that the PRISM theory is a powerful tool for investigating the structure and properties of complex polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号