首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   136篇
  国内免费   907篇
化学   1548篇
晶体学   25篇
力学   74篇
综合类   42篇
数学   286篇
物理学   303篇
  2024年   15篇
  2023年   60篇
  2022年   74篇
  2021年   67篇
  2020年   62篇
  2019年   71篇
  2018年   57篇
  2017年   79篇
  2016年   97篇
  2015年   65篇
  2014年   123篇
  2013年   122篇
  2012年   90篇
  2011年   125篇
  2010年   106篇
  2009年   133篇
  2008年   117篇
  2007年   132篇
  2006年   97篇
  2005年   94篇
  2004年   98篇
  2003年   64篇
  2002年   60篇
  2001年   57篇
  2000年   37篇
  1999年   32篇
  1998年   34篇
  1997年   27篇
  1996年   24篇
  1995年   16篇
  1994年   11篇
  1993年   10篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有2278条查询结果,搜索用时 15 毫秒
31.
NdOx作为助催化剂对PtRu/C电催化氧化甲醇活性的影响   总被引:5,自引:0,他引:5  
采用沉积-还原法制备了PtRu-NdOx/C催化剂, 借助TEM、EDS和XRD等测试手段对其进行了微结构和组成的表征. 结果表明, 催化剂中Pt与Ru以合金形式存在, 而Nd的氧化物则以无定形形态存在. 催化剂粒子的平均粒径在2 nm左右, 晶胞参数为0.3896 nm, Nd氧化物的加入对PtRu合金的晶体结构影响不明显. 采用循环伏安法和计时电流法, 比较了PtRu-NdOx/C催化剂和PtRu /C催化剂对甲醇氧化的电催化活性, 结果表明, 加入Nd的氧化物作为助催化剂能明显提高PtRu /C催化剂对甲醇氧化的电催化性能.  相似文献   
32.
直接甲醇燃料电池阴极电催化剂的研究进展   总被引:8,自引:0,他引:8  
直接甲醇燃料电池(DMFC)功率密度高,燃料甲醇价格低廉、储存和携带方便,特别适合作为电动车和小型电子设备的电源,是目前燃料电池研究领域的一个热点。本文介绍了40年来DMFC阴极电催化剂的发展历史及现状,并针对目前严重影响DMFC性能的“甲醇透过”问题,阐述了研制耐甲醇阴极电催化剂的重要性,讨论了今后DMFC阴极电催化剂的发展趋势。  相似文献   
33.
本文研究并探讨了NK-ELN型离子交换树脂在再生贮氢合金材料包覆液过程中,温度、流速、溶液中离子浓度等条件对树脂交换容量和再生效率的影响,为树脂法再生贮氢合金材料包覆液工艺的制定,提供了一系列重要参数。  相似文献   
34.
提出了在四氢呋喃(THF)、H2O和乙醇三元体系中用一般的化学还原法在室温下制备高合金化Pt-Ru/CMK-3催化剂的新方法. 与在纯水中制得的商品化ETEK催化剂相比, 其Pt-Ru粒子的合金化程度高、平均粒径较小且相对结晶度低, 因此, 该催化剂对甲醇氧化的电催化活性远高于在纯水中制得的Pt-Ru催化剂. 高合金化程度的原因是H2PtCl6和RuCl3在THF、H2O和乙醇三元溶液体系中的起始还原电位相近. 此外, CMK-3以其规整的二维有序孔道结构, 为直接甲醇燃烧电池(DMFC)中电子和物质的传输提供了方便的路径, 其巨大的比表面积也为Pt-Ru 纳米粒子的均匀分散提供了良好的载体.  相似文献   
35.
超级电容器是一种介于电池与传统电容器之间的新型储能器件,具有高能量密度、高功率密度的双重特性。超级电容器可以配合燃料电池、锂离子电池作为电源系统,解决电动汽车在加速、爬破、刹车时单一电池无法克服的问题;超级电容器也可以作为太阳能、风能等绿色发电系统储能装置;它亦可以作为电子、通讯、医疗等设备的主力电源。为此,在近20年来,超级电容器成为发达国家(美国、俄罗斯、日本、澳大利亚以及欧洲国家)重点投资研究开发项目,并于20世纪80年代国际各大电气公司把多种超级电容器陆续投放市场。  相似文献   
36.
合成异丙苯二次失活FX-01催化剂烧炭再生研究   总被引:4,自引:3,他引:4  
以工业合成异丙苯二次失活催化剂为研究对象,考察了二次失活催化剂在不同温度下再生前后酸种类及其比例、酸含量、晶相、孔结构等性能,并分析了失活催化剂结炭性质及不同温度烧炭再生情况。结果表明:温度大于450℃才能烧炭,500℃可将炭烧除78%,600℃方可将炭烧净。500~600℃烧炭后催化剂酸种类及其比例可完全恢复,酸量可恢复80~99%,晶相、孔结构基本未改变,本征活性恢复66~85%。与一次轻度结炭FX01催化剂相比,要提高烧炭温度。  相似文献   
37.
 通过有机物分解碳化处理TiO2 纳米管制得了TiO2C, 并以其为载体制备了Pd/TiO2C电催化剂,考察了该催化剂对碱性介质中乙醇电催化氧化的活性. 结果表明,碳化导电处理的TiO2C纳米管载体能有效改善催化剂中贵金属的分散度和电极结构,从而提高催化剂的电催化活性. 对催化剂活性组分的优化实验表明, Pd/TiO2C质量比为1/1时催化剂的活性最高. 在1 mol/L KOH溶液中Pd载量均为0.3 mg/cm2的条件下, Pd/TiO2C催化剂对乙醇氧化的催化活性是Pd/C催化剂的3.8倍.  相似文献   
38.
 分别以SBA-15和MCM-41介孔分子筛作模板剂,采用浸渍还原法制备了纵横比及合金度不同的双组元PtRu纳米线和纳米棒电催化剂. 透射电镜、 X射线衍射表征和电化学测试结果表明, PtRu纳米线具有较高的合金度和较大的纵横比,在甲醇硫酸溶液中表现出更好的电催化活性. 初步探讨了PtRu纳米线催化剂的合金度和纵横比对其电催化活性和电极性能的影响.  相似文献   
39.
熔融碳酸盐燃料电池阳极材料表面改性   总被引:1,自引:0,他引:1  
方百增  刘新宇 《电化学》1997,3(2):143-147
选择铌作为合金化元素,通过氟化物熔盐电化学表面合金化的方法对熔融碳酸盐燃料电池阳极材料镍进行表面改性,改性后的阳极材料的耐蚀性能与电催化性能均得到明显的改善。  相似文献   
40.
Ceramic BaCe0.8Ho0.2O3-α with orthorhombic perovskite structure was prepared by conventional solid state reaction, and its conductivity and ionic transport number were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 600-1000 ℃ in wet hydrogen and wet air, respectively. Using the ceramics as solid electrolyte and porous platinum as electrodes, the hydrogen-air fuel cell was constructed, and the cell performance at temperature from 600-1000 ℃ was examined. The results indicate that the specimen was a pure protonic conductor with the protonic transport number of 1 at temperature from 600-900 ℃ in wet hydrogen, a mixed conductor of proton and electron with the protonic transport number of 0.99 at 1000 ℃. The electronic conduction could be neglected in this case, thus the total conductivity in wet hydrogen was approximately regarded as protonic conductivity. In wet air, the specimen was a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers were 0.01-0.09, and the oxide-ionic transport numbers were 0.27-0.32. The oxide ionic conductivity was increased with the increase of temperature, but the protonic conductivity displayed a maximum at 900 ℃, due to the combined increase in mobility and depletion of the carriers. The fuel cell could work stably. At 1000 ℃, the maximum short-circuit current density and power output density were 346 mA/cm^2 and 80 mW/cm^2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号