首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   16篇
  国内免费   12篇
化学   62篇
数学   24篇
物理学   3篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   7篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
51.
In this paper we derive certain sufficient conditions for starlikeness and convexity of order α of meromorphically multivalent functions in the punctured unit disk.  相似文献   
52.
A new multivalent glycopolymer platform for lectin recognition is introduced in this work by combining the controlled growth of glycopolymer brushes with highly specific glycosylation reactions. Glycopolymer brushes, synthetic polymers with pendant saccharides, are prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) of 2‐O‐(N‐acetyl‐β‐d ‐glucosamine)ethyl methacrylate (GlcNAcEMA). Here, the fabrication of multivalent glycopolymers consisting of poly(GlcNAcEMA) is reported with additional biocatalytic elongation of the glycans directly on the silicon substrate by specific glycosylation using recombinant glycosyltransferases. The bioactivity of the surface‐grafted glycans is investigated by fluorescence‐linked lectin assay. Due to the multivalency of glycan ligands, the glycopolymer brushes show very selective, specific, and strong interactions with lectins. The multiarrays of the glycopolymer brushes have a large potential as a screening device to define optimal‐binding environments of specific lectins or as new simplified diagnostic tools for the detection of cancer‐related lectins in blood serum.

  相似文献   

53.
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50=300 nM) for specific internalization by langerin-expressing cells.  相似文献   
54.
Current approaches to design monodisperse protein assemblies require rigid, tight, and symmetric interactions between oligomeric protein units. Herein, we introduce a new multivalent-interaction-driven assembly strategy that allows flexible, spaced, and asymmetric assembly between protein oligomers. We discovered that two polygonal protein oligomers (ranging from triangle to hexagon) dominantly form a discrete and stable two-layered protein prism nanostructure via multivalent interactions between fused binding pairs. We demonstrated that protein nano-prisms with long flexible peptide linkers (over 80 amino acids) between protein oligomer layers could be discretely formed. Oligomers with different structures could also be monodispersely assembled into two-layered but asymmetric protein nano-prisms. Furthermore, producing higher-order architectures with multiple oligomer layers, for example, 3-layered nano-prisms or nanotubes, was also feasible.  相似文献   
55.
A series of novel bifunctional glycolipid ligands designed to bind with high affinity and specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized and assayed in vitro on human hepatoma cells, HepG2, derived from parenchymal liver cells. The compounds bear five β-linked Gal moieties linked to the core scaffold, hexa-antennary alcohol, for interaction with the binding site of the ASGP-R. The liposome/DNA complexes containing the glycolipid ligands are efficiently recognized by ASGP-R and exhibited high affinity and transfection activity.  相似文献   
56.
57.
Polymer therapeutics: concepts and applications   总被引:14,自引:0,他引:14  
Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.  相似文献   
58.
Sialic acids (Sias) are fascinating nine‐carbon monosaccharides that are primarily found on the terminus of the oligosaccharide chains of glycoproteins and glycolipids on cell surfaces. These Sias undergo a variety of structural modifications at their hydroxy and amine positions, thereby resulting in structural diversity and, hence, coordinating a variety of biological processes. However, deciphering the structural functions of such interactions is highly challenging, because the monovalent binding of Sias is extremely weak. Over the last decade, several multivalent Sia ligands have been synthesized to modulate their binding affinity with proteins/lectins. In this Minireview, we highlight recent developments in the synthesis of multivalent Sia probes and their potential applications. We will discuss four key multivalent families, that is, polymers, dendrimers, liposomes, and nanoparticles, and will emphasize the major parameters that are essential for the specific interactions of these molecules with proteins in biological systems.  相似文献   
59.
By making use of a general linear operator , the authors introduce several new subclasses of multivalent functions and investigate various inclusion relationships and argument properties associated with these subclasses. Some interesting applications involving such and other families of linear operators are also considered. The results presented here include a number of known results as their special cases.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号