首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2786篇
  免费   450篇
  国内免费   288篇
化学   571篇
晶体学   38篇
力学   1364篇
综合类   50篇
数学   526篇
物理学   975篇
  2024年   10篇
  2023年   16篇
  2022年   59篇
  2021年   83篇
  2020年   101篇
  2019年   67篇
  2018年   59篇
  2017年   118篇
  2016年   142篇
  2015年   107篇
  2014年   133篇
  2013年   199篇
  2012年   137篇
  2011年   172篇
  2010年   116篇
  2009年   164篇
  2008年   164篇
  2007年   169篇
  2006年   155篇
  2005年   154篇
  2004年   138篇
  2003年   136篇
  2002年   110篇
  2001年   101篇
  2000年   105篇
  1999年   103篇
  1998年   72篇
  1997年   63篇
  1996年   64篇
  1995年   37篇
  1994年   54篇
  1993年   34篇
  1992年   27篇
  1991年   21篇
  1990年   24篇
  1989年   21篇
  1988年   18篇
  1987年   15篇
  1986年   8篇
  1985年   11篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1979年   8篇
  1978年   5篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有3524条查询结果,搜索用时 187 毫秒
101.
For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.  相似文献   
102.
The Fe3Al alloy with D03 structure exhibits large recoverable strains due to reversible slips. Tension and compression experiments were conducted on single crystals of Fe3Al, and the onset of slip in forward and reverse directions were obtained utilizing high-resolution digital image correlation technique. The back stress provides the driving force for reversal of deformation upon unloading, resulting in a superelastic phenomenon as in shape memory alloys. Using density functional theory simulations, we obtain the energy barriers (GSFE – generalized stacking fault energy) for {1?1?0}〈1?1?1〉 and {1?1?2}〈1?1?1〉 slips in D03 Fe3Al and the elastic moduli tensor, and undertake anisotropic continuum calculations to obtain the back stress and the frictional stress responsible for reversible slip. We compare the theoretically obtained slip stress magnitudes (friction and back stress) with the experimental measurements disclosing excellent agreement.  相似文献   
103.
104.
Our aim is to understand the electronic and steric factors that determine the activity and selectivity of transition‐metal catalysts for cross‐coupling reactions. To this end, we have used the activation strain model to quantum‐chemically analyze the activity of catalyst complexes d10‐M(L)n toward methane C?H oxidative addition. We studied the effect of varying the metal center M along the nine d10 metal centers of Groups 9, 10, and 11 (M=Co?, Rh?, Ir?, Ni, Pd, Pt, Cu+, Ag+, Au+), and, for completeness, included variation from uncoordinated to mono‐ to bisligated systems (n=0, 1, 2), for the ligands L=NH3, PH3, and CO. Three concepts emerge from our activation strain analyses: 1) bite‐angle flexibility, 2) d‐regime catalysts, and 3) s‐regime catalysts. These concepts reveal new ways of tuning a catalyst’s activity. Interestingly, the flexibility of a catalyst complex, that is, its ability to adopt a bent L‐M‐L geometry, is shown to be decisive for its activity, not the bite angle as such. Furthermore, the effect of ligands on the catalyst’s activity is totally different, sometimes even opposite, depending on the electronic regime (d or s) of the d10‐M(L)n complex. Our findings therefore constitute new tools for a more rational design of catalysts.  相似文献   
105.
Perovskite lattice distortion induced by residual tensile strain from the thermal expansion mismatch between the electron-transporting layer (ETL) and perovskite film causes a sluggish charge extraction and transfer dynamics in all-inorganic CsPbBr3 perovskite solar cells (PSCs) because of their higher crystallization temperatures and thermal expansion coefficients. Herein, the interfacial strain is released by fabricating a WS2/CsPbBr3 van der Waals heterostructure owing to their matched crystal lattice structure and the atomically smooth dangling bond-free surface to act as a lubricant between ETL and CsPbBr3 perovskite. Arising from the strain-released interface and condensed perovskite lattice, the best device achieves an efficiency of 10.65 % with an ultrahigh open-circuit voltage of 1.70 V and significantly improved stability under persistent light irradiation and humidity (80 %) attack over 120 days.  相似文献   
106.
This paper is concerned with the experimental testing and the constitutive modelling of a thermoplastic microcellular polyethylene-terephthalate (MC-PET) foam on the temperature range of 21–210 °C in order to investigate the temperature-dependent performance of the applied parallel viscoelastic-viscoplastic material model. By means of carefully designed uniaxial mechanical tests in temperature chamber, the viscous, elastic and yielding behaviours of the investigated material are identified, which are then applied for selecting suitable viscoelastic-viscoplastic constitutive models. The material characterization process is conducted using finite-element-based fitting method, including also the analysis of the applied numerical optimization algorithm. The fitting results are used to analyse the parameter sensitivity and to propose closed-form analytical relations for the temperature dependency of the material parameters. Finally, the utilisation of the analytical temperature functions for speeding up the parameter-fitting process is also demonstrated.  相似文献   
107.
Since 1996, a growing number of strained macrocycles, comprising only sp2‐ or sp‐hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes ( CPPAs ) and the [n]cycloparaphenylenes ( CPPs ) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near‐perfect circular shape, the unusually high degree of shape‐persistence, and the presence of both convex and concave π‐faces. In this Minireview, we give an overview on the use of strained carbon‐rich nanohoops in host–guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.  相似文献   
108.
A gas‐phase approach to form Zn coordination sites on metal–organic frameworks (MOFs) by vapor‐phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution‐phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2 to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200–300 mV. Using element‐specific X‐ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square‐pyramidal geometry with four Zn?N bonds in the equatorial plane and one Zn‐OH2 bond in the axial plane. The fine‐tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.  相似文献   
109.
Particles dispersed on the surface of oxide supports have enabled a wealth of applications in electrocatalysis, photocatalysis, and heterogeneous catalysis. Dispersing nanoparticles within the bulk of oxides is, however, synthetically much more challenging and therefore less explored, but could open new dimensions to control material properties analogous to substitutional doping of ions in crystal lattices. Here we demonstrate such a concept allowing extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, within a perovskite oxide lattice as well as on its surface. By employing operando techniques, we show that in the emergent nanostructure, the endogenous nanoparticles and the perovskite lattice become reciprocally strained and seamlessly connected, enabling enhanced oxygen exchange. Additionally, even deeply embedded nanoparticles can reversibly exchange oxygen with a methane stream, driving its redox conversion to syngas with remarkable selectivity and long term cyclability while surface particles are present. These results not only exemplify the means to create extensive, self‐strained nanoarchitectures with enhanced oxygen transport and storage capabilities, but also demonstrate that deeply submerged, redox‐active nanoparticles could be entirely accessible to reaction environments, driving redox transformations and thus offering intriguing new alternatives to design materials underpinning several energy conversion technologies.  相似文献   
110.
Strain engineering can increase the activity and selectivity of an electrocatalyst. Tensile strain is known to improve the electrocatalytic activity of palladium electrodes for reduction of carbon dioxide or dioxygen, but determining how strain affects the hydrogen evolution reaction (HER) is complicated by the fact that palladium absorbs hydrogen concurrently with HER. We report here a custom electrochemical cell, which applies tensile strain to a flexible working electrode, that enabled us to resolve how tensile strain affects hydrogen absorption and HER activity for a thin film palladium electrocatalyst. When the electrodes were subjected to mechanically‐applied tensile strain, the amount of hydrogen that absorbed into the palladium decreased, and HER electrocatalytic activity increased. This study showcases how strain can be used to modulate the hydrogen absorption capacity and HER activity of palladium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号