首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6262篇
  免费   649篇
  国内免费   612篇
化学   3826篇
晶体学   36篇
力学   203篇
综合类   74篇
数学   2331篇
物理学   1053篇
  2024年   5篇
  2023年   44篇
  2022年   57篇
  2021年   91篇
  2020年   159篇
  2019年   162篇
  2018年   162篇
  2017年   218篇
  2016年   180篇
  2015年   200篇
  2014年   278篇
  2013年   967篇
  2012年   264篇
  2011年   298篇
  2010年   261篇
  2009年   317篇
  2008年   347篇
  2007年   368篇
  2006年   349篇
  2005年   296篇
  2004年   277篇
  2003年   251篇
  2002年   851篇
  2001年   178篇
  2000年   186篇
  1999年   120篇
  1998年   140篇
  1997年   82篇
  1996年   87篇
  1995年   77篇
  1994年   60篇
  1993年   37篇
  1992年   29篇
  1991年   17篇
  1990年   18篇
  1989年   15篇
  1988年   16篇
  1987年   13篇
  1986年   7篇
  1985年   4篇
  1984年   9篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1936年   1篇
排序方式: 共有7523条查询结果,搜索用时 328 毫秒
71.
Methacrylate‐functionalized poly(ethylene oxide‐co‐ethylene carbonate) macromonomers were prepared in two steps by the anionic ring‐opening polymerization of ethylene carbonate at 180 °C, with potassium methoxide as the initiator, followed by the reaction of the terminal hydroxyl groups of the polymers with methacryloyl chloride. The molecular weight of the polymer went through a maximum after approximately 45 min of polymerization, and the content of ethylene carbonate units in the polymer decreased with the reaction time. A polymer having a number‐average molecular weight of 2650 g mol?1 and an ethylene carbonate content of 28 mol % was selected and used to prepare a macromonomer, which was subsequently polymerized by UV irradiation in the presence of different concentrations of lithium bis(trifluoromethanesulfonyl)imide salt. The resulting self‐supportive crosslinked polymer electrolyte membranes reached ionic conductivities of 6.3 × 10?6 S cm?1 at 20 °C. The coordination of the lithium ions by both the ether and carbonate oxygens in the polymer structure was indicated by Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2195–2205, 2006  相似文献   
72.
A spiro orthoester with an exomethylene group (exoSOE) was radically copolymerized with acrylonitrile or vinyl acetate at several feed ratios to obtain the corresponding copolymers having spiro orthoester moieties in the side chain. The obtained copolymers could be crosslinked via the double ring‐opening polymerization of the spiro orthoester moieties in their side chain by a treatment with BF3OEt2. The volume changes upon the crosslinking of the copolymers were evaluated by density measurements with a micromeritics gas pycnometer. The copolymers experienced less than 1% volume expansion instead of volume shrinkage during typical cationic crosslinking, regardless of the copolymer compositions. Negligible shrinkage was observed during the thermal cationic crosslinking of a film cast from a nitrobenzene solution of the copolymers containing a benzylthiophenium salt as a thermally latent cationic initiator. The constantly low volume changes during the crosslinking of the copolymers from exoSOE probably depended on the almost zero volume change during the cationic polymerizations of spiro orthoester derivatives. This indicates that exoSOE is an effective monomer for crosslinkable polymers without volume changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3666–3673, 2006  相似文献   
73.
Natural human hair was modified by the graft polymerization of propylene sulfide in an aqueous medium. The amount of the polymer grafted onto the reduced hair was 0.15–0.19 g on 1.0 g of hair. The grafted polymer was isolated by the hydrolysis of the hair in the polymer‐grafted hair under basic conditions and was confirmed to be poly(propylene sulfide) by 1H NMR, 13C NMR, and Fourier transform infrared spectra. The number‐average molecular weights of the isolated polymers from the grafted products were 10,000–12,000. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3778–3786, 2006  相似文献   
74.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
75.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   
76.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   
77.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   
78.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   
79.
Spiro orthocarbonate (SOC) monomers having either an exomethylene group {3,3‐dimethyl‐9‐methylene‐1,5,7,11‐tetraoxaspiro[5.5]undecane (ExoSOC)} or an allyl group {9‐allyl‐3,3‐dimethyl‐1,5,7,11‐tetraoxaspiro[5.5]undecane (AllylSOC)} were radically copolymerized with vinyl monomers at several feed ratios to obtain the corresponding copolymers having SOC moieties in the side chain. The obtained copolymers were crosslinked via the double ring‐opening polymerization of the SOC moieties by a treatment with boron trifluoride etherate. The volume changes during the crosslinking of the copolymers were evaluated by density measurements with a gas pycnometer. As the SOC moiety composition increased, the volume shrinkage during the crosslinking was suppressed, and that finally changed into volume expansion. The volume changes during the crosslinking of the copolymers from AllylSOC were slightly larger than those of the copolymers from ExoSOC. The higher volume expansions in the crosslinking of AllylSOC‐based copolymers were ascribable to the lower steric hindrance around the SOC moieties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7040–7053, 2006  相似文献   
80.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号