首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25652篇
  免费   3113篇
  国内免费   3588篇
化学   10053篇
晶体学   146篇
力学   2684篇
综合类   221篇
数学   7904篇
物理学   11345篇
  2024年   77篇
  2023年   270篇
  2022年   418篇
  2021年   656篇
  2020年   835篇
  2019年   757篇
  2018年   762篇
  2017年   897篇
  2016年   1055篇
  2015年   935篇
  2014年   1285篇
  2013年   2233篇
  2012年   1414篇
  2011年   1684篇
  2010年   1310篇
  2009年   1719篇
  2008年   1755篇
  2007年   1801篇
  2006年   1535篇
  2005年   1318篇
  2004年   1075篇
  2003年   1084篇
  2002年   999篇
  2001年   790篇
  2000年   804篇
  1999年   688篇
  1998年   616篇
  1997年   469篇
  1996年   337篇
  1995年   334篇
  1994年   269篇
  1993年   227篇
  1992年   196篇
  1991年   180篇
  1990年   175篇
  1989年   171篇
  1988年   140篇
  1987年   132篇
  1986年   103篇
  1985年   114篇
  1984年   101篇
  1983年   38篇
  1982年   77篇
  1981年   69篇
  1980年   57篇
  1979年   67篇
  1978年   56篇
  1977年   66篇
  1976年   58篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
针对CO2热催化转化制甲醇过程中CO2吸附、活化较困难及副产物较多的问题,提出采用单原子Ge助剂修饰Cu(111)晶面的解决思路,通过密度泛函理论(DFT)计算研究了CO2在Ge-Cu(111)晶面上加氢合成甲醇的反应机理。结果表明,单原子Ge助剂的电子调控增加了与其相邻的 Cu 原子的电子云密度,使 CO2分子在含 Ge 活性界面上的吸附能力显著增强:CO2在 Ge-Cu(111)晶面上的吸附能约为Cu(111)晶面的1.5倍,约为Pd改性Cu(111)晶面的2.4倍,进而使逆水煤气变换(RWGS)反应路径速控步骤的活化能降低了近 20 kJ·mol-1,同时衍生出 3条生成甲醇的 RWGS新路径;此外,Ge-Cu(111)晶面上甲酸盐路径由于速控步骤活化能大幅上升而被禁阻,进而CO及烃类等副产物选择性大幅降低,Ge-Cu(111)晶面上CO2加氢制甲醇选择性升高。  相似文献   
992.
This work presents a theoretical insight into the variation of the site-specific intermolecular hydrogen-bonding (HB), formed between C=O group of fluorenone (FN) and O-H groups of methanol (MeOL) molecules, induced by both the electronic excitation and the bulk solvent effect. Through the calculation of molecular ground- and excited-state properties, we not only demonstrate the characters of HB strengthening induced by electronic excitation and the bulk solvent effect but also reveal the underlying physical mechanism which leads to the HB variation. The strengthening of the intermolecular HB in electronically excited states and in liquid solution is characterized by the reduced HB bond-lengths and the red-shift IR spectra accompanied by the increasing intensities of IR absorption corresponding to the characteristic vibrational modes of the O-H and C--O stretching. The HB strengthening in the excited electronic states and in solution mainly arises from the charge redistribution of the FN molecule induced by the electronic excitation and bulk solvent instead of the intermolecular charge transfer. The charge redistribution of the solute molecule increases the partial dipole moment of FN molecule and the FN-MeOL intermolecular interaction, which subsequently leads to the HB strengthening. With the bulk solvent effect getting involved, the theoretical IR spectra of HBed FN-MeOL complexes agree much better with the experiments than those of gas-phase FN-MeOL dimer. All the calculations are carried out based on our developed analytical approaches for the first and second energy derivatives of excited electronic state within the time-dependent density functional theory.  相似文献   
993.
The C-I bond dissociation enthalpies (BDE) of various organic iodides were calculated using high-level theoretical methods including MP2 and CCSD(T) with extrapolated basis set as well as a number of density functional theory methods. After systematic evaluation of the theoretical results against available experimental C-I BDEs, it was found that the MPW LYPIM method gave the lowest root mean square error. We, therefore, used this method to examine the substituent effects on different categories of C(sp3)-I and C(sp2)-I bonds. Fur thermore, the remote substituent effects on the C-I BDEs of substituted iodobenzenes and substituted (iodomethyl)benzenes were also investigated at the same level. The C-I BDEs of typical heteroaromatic iodides including five-membered and six-membered heterocyclic iodides were also examined.  相似文献   
994.
The adsorption and inhibition effect of xanthione (XION) on mild steel in 0.5 M H2SO4 at 303–333 K were studied using gravimetric and UV–visible spectrophotometric methods. The results obtained show that XION acts as an effective corrosion inhibitor for mild steel in sulphuric acid and inhibition efficiency reaches 98.0% at a very low inhibitor concentration of 10 μM. Inhibition efficiency was found to increase with increase in XION concentration but decreased with temperature suggesting physical adsorption mechanism. Arrhenius law and its transition equation lead to estimate the activation parameters of the corrosion process. XION inhibits the corrosion of mild steel effectively at moderate temperature and adsorbs according to the Langmuir isotherm. Thermodynamic parameters governing the adsorption process have been calculated and discussed. The UV–visible absorption spectra of the solution containing the inhibitor after the immersion of mild steel specimen indicate the formation of a XEN–Fe complex. Attempt to correlate the molecular structure to quantum chemical indices was made using density functional theory (DFT).  相似文献   
995.
Molecular adsorption of formate and carboxyl on stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory (DFT+U) calculations. Two distinguishable adsorption modes (strong and weak) of formate are identified. The bidentate configuration is more stable than the monodentate adsorption configuration. Both formate and carboxyl bind at the more open CeO2(110) surface are stronger. The calculated vibrational frequencies of two adsorbed species are consistent with the experimental measurements. Finally, the effects of U parameters on the adsorption of formate and carboxyl over both CeO2 surfaces were investigated. We found that the geometrical configurations of two adsorbed species are not affected by different U parameters (U = 0, 5, and 7). However, the calculated adsorption energy of carboxyl pronouncedly increases with the U value while the adsorption energy of formate only slightly changes (<0.2 eV). The Bader charge analysis shows the opposite charge transfer occurs for formate and carboxyl adsorption where the adsorbed formate is negatively charge while the adsorbed carboxyl is positively charged. Interestingly, with the increasing U parameter, the amount of charge is also increased.  相似文献   
996.
The ring expansion reactions of unactivated alkynylcyclopropanes X‐C≡C‐C3H5 → X‐C=C4H5 (X = H, F, Cl, Me, OMe, NMe2, CMe3) were examined using the density functional theory calculations. All of the structures were completely optimized at the B3LYP/6‐311++G** level of theory. For clarify the effect of the cationic gold(I), we also added AuPH3+ as the catalyst into the system and the structures for Au were calculated at the B3LYP/LANL2DZ level of theory. The main finding of this work is that the singlet‐triplet splitting of X‐C≡C‐C3H5 play an important role in determining the kinetic and thermodynamic stability of the unactivated ring expansion reactions. When X‐C≡C‐C3H5 with a smaller singlet‐triplet splitting is utilized, the reaction has a smaller activation energy and a larger exothermicity.  相似文献   
997.
The title compound, rac‐6,13‐dihydro‐6,13‐methanopentacene ( 1 ), has been synthesized and characterized by elemental analysis, FT‐IR, 1H NMR, UV‐Vis, HRMS spectra, cyclic voltammetry and single‐crystal X‐ray diffraction. The crystal belongs to orthorhombic, space group P212121, with Z = 4 and cell dimensions a = 6.0185(4), b = 8.1914(6), c = 31.4080(19) Å. In the crystal structure, two types of intermolecular C–H···π hydrogen bonds are observed, and further stabilize the crystal structure. Its photophysical and electrochemical properties and complementary density functional theory (DFT) calculations are reported.  相似文献   
998.
Calculations using density functional theory were performed to explore the mechanisms for atmospheric degradation of isopropyl methyl methylphosphonate (IMMP). The potential energy surface profiles for OH‐initiated reaction of IMMP were constructed, and all possible degradation channels were considered. Rate constants were further calculated using transition state theory. It was established from these calculations that H‐abstractions from alkyl groups have much lower energy barriers than substitutions of alkoxyl groups, and four possible H‐abstraction channels are competitive. Investigations into the secondary reactions under the presence of O2/NO were also performed. It is shown that O2 addition, reaction of peroxide radicals with NO to form RO radicals, and removal of ·RO are the major degradation pathways for alkyl radicals. Four selected products, CH3OP(O)(CH3)OC(O)CH3, CH3OP(O)(O)CH3, (CH3)2CHOP(O)(CH3)OH, and (CH3)2CHOP(O)(CH3)OCH?O, are predicted to be the major products in this study. © 2013 Wiley Periodicals, Inc.  相似文献   
999.
In present investigation, the interactions of iridium (Ir) atom with fluorine (F) atoms have been studied using the density functional theory. Up to seven F atoms were able to bind to a single Ir atom which resulted in increase of electron affinities successively, reaching a peak value of 7.85 eV for IrF7. The stability and reactivity of these clusters were analyzed by calculating highest occupied molecular orbital (HOMO)–LUMO gaps, molecular orbitals and binding energies of these clusters. The unusual properties of these clusters are due to the involvement of inner shell 5d‐electrons, which not only allows IrFn clusters to belong to the class of superhalogens but also shows that its valence can exceed the nominal value of 2. © 2012 Wiley Periodicals, Inc.  相似文献   
1000.
Theoretical calculations on interaction of the C20 fullerene (consists solely by pentagons) with the smallest amino acid (glycine) were carried out using density‐functional theory method. The glycine molecule energetically prefers to interact with the Top‐site on the C20 cage via its amino nitrogen (N) active site. The stable ordering of three active sites on glycine molecule is NH2‐site > O‐site > OH‐site. Moreover, when the Gd atom is encapsulated to the center of C20‐glycine, the cage volume obviously increase ~24.8%; and the endohedral atom induces the generation of two strong bands in the partial density of states spectra, which could cause the effect on optical properties. Additionally, it is also found that the modified C20‐glycine derivative by Gd atom can reduce the thermodynamic and kinetic stabilities. It could be expected that the study may provide a theoretical reference in exploring their intrinsic feature structurally to antitumor activity. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号