首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   139篇
  国内免费   145篇
化学   572篇
晶体学   13篇
力学   378篇
综合类   7篇
数学   126篇
物理学   199篇
  2024年   2篇
  2023年   16篇
  2022年   42篇
  2021年   53篇
  2020年   78篇
  2019年   60篇
  2018年   38篇
  2017年   49篇
  2016年   71篇
  2015年   41篇
  2014年   41篇
  2013年   85篇
  2012年   60篇
  2011年   70篇
  2010年   50篇
  2009年   46篇
  2008年   43篇
  2007年   43篇
  2006年   49篇
  2005年   35篇
  2004年   30篇
  2003年   45篇
  2002年   42篇
  2001年   27篇
  2000年   21篇
  1999年   28篇
  1998年   24篇
  1997年   14篇
  1996年   13篇
  1995年   9篇
  1994年   7篇
  1993年   13篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   1篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1978年   1篇
  1971年   1篇
  1957年   4篇
  1936年   1篇
排序方式: 共有1295条查询结果,搜索用时 31 毫秒
61.
Light‐driven micropumps, which are based on electro‐osmosis with the electric field generated by photocatalytic reactions, are among most attractive research topics in chemical micromotors. Until now, research in this field has mainly been focused on the directional motion or collective behavior of microparticles, which lack practical applications. In this study, we have developed a photowelding strategy for repeated photoinduced conductivity recovery of cracked flexible circuits. We immersed the circuit in a suspension of conductive healing particles and applied photoillumination to the crack; photocatalysis of a predeposited pentacene (PEN) layer triggered electro‐osmotic effects to gather conductive particles at the crack, thus leading to conductivity recovery of the circuit. This photowelding strategy is a novel application of light‐driven micropumps and photocatalysis for conductivity restoration.  相似文献   
62.
Together with high conductivity, high flexibility is an important property required for next generation organic electronic components. Both properties are difficult to achieve together especially when the components are crystalline because of the intrinsic high brittleness of organic molecular crystals. We report an organic radical crystal system that has both high flexibility and high conductivity. The crystal consists of 9,10‐bis(phenylethynyl)anthracene radical cation ( BPEA.+ ) units, and shows flexibility under pressure with high conductivity in ambient condition exhibiting average conductivity of 2.68 S cm?1 when normal linear shape, as well as 2.43 S cm?1 when bent. The structural analysis reveals that both a short π–π distance (3.290 Å) between BPEA.+ units that are aligned along the crystal length direction, and the presence of PF6? counter ions induce flexibility and high electrical conductivity.  相似文献   
63.
A simple, fast, and sensitive analytical protocol using fabric‐phase sorptive extraction followed by high performance liquid chromatography with ultraviolet detection has been developed and validated for the extraction of five parabens including methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. In the present work, sol‐gel polyethylene glycol coated fabric‐phase sorptive extraction membrane is used for the preconcentration of parabens (polar) from complex matrices. The use of fabric‐phase sorptive extraction membrane provides a high surface area which offers high sorbent loading, shortened equilibrium time, and overall decrease in the sample preparation time. Various factors affecting the performance of fabric‐phase sorptive extraction, including extraction time, eluting solvent, elution time, and pH of the sample matrix, were optimized. Separation was performed using a mobile phase consisting of water:acetonitrile (63:37; v/v) at an isocratic elution mode at a flow rate of 0.9 mL/min with wavelength at 254 nm. The calibration curves of the target analytes were prepared with good correlation coefficient values (r2 > 0.9955). The limit of detection values range from 0.252 to 0.580 ng/mL. Finally, the method was successfully applied to various cosmetics and personal care product samples such as rose water, deodorant, hair serum, and cream with extraction recoveries ranged between 88 and 122% with relative standard deviation <5%.  相似文献   
64.
Electrochemistry belongs to an important branch of chemistry that deals with the chemical changes produced by electricity and the production of electricity by chemical changes. Therefore, it can not only act a powerful tool for materials synthesis, but also offer an effective platform for sensing and catalysis. As extraordinary zero‐dimensional materials, carbon‐based quantum dots (CQDs) have been attracting tremendous attention due to their excellent properties such as good chemical stability, environmental friendliness, nontoxicity and abundant resources. Compared with the traditional methods for the preparation of CQDs, electrochemical (EC) methods offer advantages of simple instrumentation, mild reaction conditions, low cost and mass production. In return, CQDs could provide cost‐effective, environmentally friendly, biocompatible, stable and easily‐functionalizable probes, modifiers and catalysts for EC sensing. However, no specific review has been presented to systematically summarize both aspects until now. In this review, the EC preparation methods of CQDs are critically discussed focusing on CQDs. We further emphasize the applications of CQDs in EC sensors, electrocatalysis, biofuel cells and EC flexible devices. This review will further the experimental and theoretical understanding of the challenges and future prospective in this field, open new directions on exploring new advanced CQDs in EC to meet the high demands in diverse applications.  相似文献   
65.
We have simulated pure liquid butane, methanol, and hydrated alanine polypeptide with the Monte Carlo technique using three kinds of random number generators (RNG's)—the standard Linear Congruential Generator (LCG), a modification of the LCG with additional randomization used in the BOSS software, and the “Mersenne Twister” generator by Matsumoto and Nishimura. While using the latter two RNG's leads to reasonably similar physical features, the LCG produces significant different results. For the pure fluids, a noticeable expansion occurs. Using the original LCG on butane yields, a molecular volume of 171.4 Å3 per molecule compared to about 163.6–163.9 Å3 for the other two generators, a deviation of about 5%. For methanol, the LCG produces an average volume of 86.3 Å3 per molecule, which is about 24% higher than the 68.8–70.2 Å3 obtained with the RNG's in BOSS and the generator by Matsumoto and Nishimura. In case of the hydrated tridecaalanine peptide, the volume and energy tend to be noticeably greater with the LCG than with the BOSS (modified LCG) RNG's. For the simulated hydrated extended conformation of tridecaalanine, the difference in volume reached about 87%. The uniformity and periodicity of the generators do not seem to play the crucial role in these phenomena. We conclude that, it is important to test a RNG's by modeling a system such as the pure liquid methanol with a well‐established force field before routinely employing it in Monte Carlo simulations. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
66.
We propose a two-color scheme of atom waveguides and one-dimensional (1D) optical lattices using evanescent wave fields of different transverse modes around an optical micro/nano-fiber. The atom guide potential can be produced when the optical fiber carries a red-detuned light with TE01 mode and a blue-detuned light with HEll mode, and the 1D optical lattice potential can be produced when the red-detuned light is transformed to the superposition of the TE01 mode and HE11 mode. The two trapping potentials can be transformed to each other for accurately controlling mode transformation for the red-detuned light. This might provide a new approach to realize flexible transition between the guiding and trapping states of atoms.  相似文献   
67.
68.
It is well known that, conventional hydrogen peroxide bleaching process is an important and a specific step for wet processors; however it has some problems such as long time, high energy consumption. On the other hand, using ultrasonic energy in bleaching is an alternative method for the conventional processes.

In this work, 100% cotton materials of different forms such as raw fibre, ring-spun yarns and knitted fabrics produced from these cottons, were treated with hydrogen peroxide in two different concentrations (5 mL/L and 10 mL/L), at three different temperatures (20 °C, 30 °C, 40 °C) and times (20 min, 30 min, 60 min). Whiteness Index of the samples were then measured spectrophotometrically and the overall results were compared.  相似文献   

69.
The optimizer developed for the Mining Minima algorithm, which uses ideas from Genetic Algorithms, the Global Underestimator Method, and Poling, has been adapted for use in ligand-receptor docking. The present study describes the resulting methodology and evaluates its accuracy and speed for 27 test systems. The performance of the new docking algorithm appears to be competitive with that of previously published methods. The energy model, an empirical force field with a distance-dependent dielectric treatment of solvation, is adequate for a number of test cases, although incorrect low-energy conformations begin to compete with the correct conformation for larger sampling volumes and for highly solvent-exposed binding sites that impose little steric constraint on the ligand.  相似文献   
70.
The dimensionless partial differential equations governing thedynamics of a thin flexible isotropic plate with an external load arederived and investigated. The period doubling bifurcations, as well asthe chaotic dynamics, are detected and analyzed. The algorithms leadingto the reduction of the original equations to those of a difference setof ordinary differential and algebraic equations are proposed, comparedto other known methods, and then applied to the problem.Among others, it is shown that, in spite of the system complexity, theFeigenbaum scenario exhibited by one-dimensional maps also governs theroute to chaos in the continuous system under consideration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号