首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6184篇
  免费   981篇
  国内免费   585篇
化学   2523篇
晶体学   123篇
力学   1630篇
综合类   66篇
数学   770篇
物理学   2638篇
  2024年   5篇
  2023年   50篇
  2022年   147篇
  2021年   165篇
  2020年   206篇
  2019年   177篇
  2018年   178篇
  2017年   214篇
  2016年   285篇
  2015年   234篇
  2014年   334篇
  2013年   492篇
  2012年   384篇
  2011年   425篇
  2010年   338篇
  2009年   401篇
  2008年   377篇
  2007年   420篇
  2006年   334篇
  2005年   314篇
  2004年   290篇
  2003年   238篇
  2002年   209篇
  2001年   188篇
  2000年   162篇
  1999年   140篇
  1998年   127篇
  1997年   122篇
  1996年   119篇
  1995年   89篇
  1994年   76篇
  1993年   85篇
  1992年   62篇
  1991年   57篇
  1990年   52篇
  1989年   42篇
  1988年   30篇
  1987年   36篇
  1986年   26篇
  1985年   20篇
  1984年   20篇
  1983年   11篇
  1982年   17篇
  1981年   16篇
  1980年   10篇
  1979年   10篇
  1978年   4篇
  1973年   3篇
  1971年   2篇
  1957年   4篇
排序方式: 共有7750条查询结果,搜索用时 86 毫秒
991.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   
992.
A novel DNA biosensor has been fabricated for the detection of DNA hybridization based on layer‐by‐layer (LBL) covalent assembly of gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWCNTs). The stepwise LBL assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated doxorubicin, and the factors influencing the performance of the DNA hybridization was investigated in detail. The signal was linearly changed with target DNA concentration increased from 0.5 to 0.01 nM, and had a detection limit of 7.5 pM (signal/noise ratio of 3). In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   
993.
Various sensor‐based immunoassay methods have been extensively developed for the detection of cancer antigen 15‐3 (CA 15‐3), but most often exhibit low detection signals and low detection sensitivity, and are unsuitable for routine use. The aim of this work is to develop a simple and sensitive electrochemical immunoassay for CA 15‐3 in human serum by using nanogold and DNA‐modified immunosensors. Prussian blue (PB), as a good mediator, was initially electrodeposited on a gold electrode surface, then double‐layer nanogold particles and double‐strand DNA (dsDNA) with the sandwich‐type architecture were constructed on the PB‐modified surface in turn, and then anti‐CA 15‐3 antibodies were adsorbed onto the surface of nanogold particles. The double‐layer nanogold particles provided a good microenvironment for the immobilization of biomolecules. The presence of dsDNA enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The performance and factors influencing the performance of the immunosensor were evaluated. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 1.0 to 240 ng/mL with a relatively low detection limit of 0.6 ng/mL (S/N=3) towards CA 15‐3. The stability, reproducibility and precision of the as‐prepared immunosensor were acceptable. 57 serum specimens were assayed by the developed immunosensor and standard enzyme‐linked immunosorbent assay (ELISA), respectively, and the results obtained were almost consistent. More importantly, the proposed methodology could be further developed for the immobilization of other proteins and biocompounds.  相似文献   
994.
A ferrocene‐labeled high molecular weight coenzyme derivative (PEI‐Fc‐NAD) and a thermostable NAD‐dependent L ‐lysine 6‐dehydrogenase (LysDH) from thermophile Geobacillus stearothermophilus were used to fabricate a reagentless L ‐lysine sensor. Both LysDH and PEI‐Fc‐NAD were immobilized on the surface of a gold electrode by consecutive layer‐by‐layer adsorption (LBL) technique. By the simple LBL method, the reagentless L ‐lysine sensor, with co‐immobilization of the mediator, coenzyme, and enzyme was obtained, which exhibited current response to L ‐lysine without the addition of native coenzyme to the analysis system. The amperometric response of the sensor was dependent on the applied potential, bilayer number of PEI‐Fc‐NAD/LysDH, and substrate concentration. A linear current response, proportional to L ‐lysine concentration in the range of 1–120 mM was observed. The response of the sensor to L ‐lysine was decreased by 30% from the original activity after one month storage.  相似文献   
995.
Novel polymer/ceramic nanocomposite membranes were fabricated, characterized and tested for their barrier performance. Atomic layer deposition (ALD) was used to deposit alumina films on primary, micron-sized (16 and 60 μm) high-density polyethylene (HDPE) particles at a rate of 0.5 nm/cycle at 77 °C. Well-dispersed polymer/ceramic nanocomposites were obtained by extruding alumina coated HDPE particles. The dispersion of alumina flakes can be controlled by varying the number of ALD coating cycles and substrate polymer particle size. The diffusion coefficient of fabricated nanocomposite membranes can be reduced to half with the inclusion of 7.29 vol.% alumina flakes. However, a corresponding increase in permeability was also observed due to the voids formed at or near the interface of the polymer and alumina flakes during the extrusion process, as evidenced by electron microscopy. The low surface wettability of the alumina outerlayers was believed to be one of the main reasons of void formation. Particle surface wettability was improved using 3-aminopropyltriethoxysilane (APS) to coat the particle ALD surface modified polymer particles prior to extrusion. The diffusion coefficient and permeability of the membrane using surfactant-modified particles decreased by 20%, relative to the non-modified case.  相似文献   
996.
In this paper, a submerged membrane adsorption bioreactor (MABR) was evaluated for drinking water treatment at a hydraulic retention time (HRT) as short as 0.5 h. As powdered activated carbon (PAC) was added to the bioreactor at 8 mg/L raw water, the MABR achieved much higher removal efficiency for organic matter in the raw water than the parallel-operated membrane bioreactor (MBR). Moreover, the trans-membrane pressure (TMP) of MABR developed much lower than that of MBR, demonstrating PAC in MABR could mitigate membrane fouling. It was also identified here that the removal of dissolved organic matter (DOM) in MABR was accomplished through the combination of three unit effects: rejection by ultrafiltration (UF) membrane, biodegradation by microorganism, and adsorption by PAC; the last was of great importance. A sludge layer was observed on the membranes surface in both MABR and MBR and PAC particles themselves constituted a part of the cake layer and helped to intercept DOM in the mixed liquor by adsorption in MABR, especially for organic molecules of 5000–500 Da. The UF membrane together with the sludge layer and PAC layer in the MABR was able to reject hydrophobic bases (HoBs), hydrophobic neutrals, hydrophobic acids (HoAs), weakly hydrophobic acids (WHoAs) and hydrophilic matter (HiM) in the mixed liquor by 40.0%, 43.9%, 71.8%, 56.6% and 35.9%, respectively.  相似文献   
997.
A concept demonstration has been made to simultaneously enhance both O2 and CO2 gas permeance and O2/N2 and CO2/CH4 selectivity via intelligently decoupling the effects of elongational and shear rates on dense-selective layer and optimizing spinning conditions in dual-layer hollow fiber fabrication. The dual-layer polyethersulfone hollow fiber membranes developed in this work exhibit an O2/N2 selectivity of 6.96 and an O2 permeance of 4.79 GPU which corresponds to an ultrathin dense-selective layer of 918 Å at room temperature. These hollow fibers also show an impressive CO2/CH4 selectivity of 49.8 in the mixed gas system considering the intrinsic value of only 32 for polyethersulfone dense films. To our best knowledge, this is the first time to achieve such a high CO2/CH4 selectivity without incorporating any material modification. The above gas separation performance demonstrates that the optimization of dual-layer spinning conditions with balanced elongational and shear rates is an effective approach to produce superior hollow fiber membranes for oxygen enrichment and natural gas separation.  相似文献   
998.
Alpha olefin sulfonate (AOS) surfactants have shown outstanding detergency, lower adsorption on porous rocks, high compatibility with hard water and good wetting and foaming properties. These properties make AOS an excellent candidate for foam applications in enhanced oil recovery. This paper summarizes the basic properties of foam films stabilized by an AOS surfactant. The foam film thickness and contact angle between the film and its meniscus were measured as a function of NaCl and AOS concentrations. The critical AOS concentration for formation of stable films was obtained. The critical NaCl concentration for formation of stable Newton black films was found. The dependence of the film thickness on the NaCl concentration was compared to the same dependence of the contact angle experiments. With increasing NaCl concentration the film thickness decreases gradually while the contact angle (and, respectively the free energy of film formation) increases, in accordance with the classical DLVO theory.The surface tension isotherms of the AOS solutions were measured at different NaCl concentrations. They coincide on a single curve when plotted as a function of mean ionic activity product. Our data imply that the adsorption of AOS is independent of NaCl concentration at a given mean ionic activity.  相似文献   
999.
We present the synthesis and structure of various protein nanotubes comprised of an alternate layer-by-layer (LbL) assembly using a polycation as an electrostatic glue. The nanotubes were fabricated by sequential LbL depositions of positively charged polycations and negatively charged proteins into a porous polycarbonate (PC) membrane, followed by release of the cylindrical core by quick dissolution of the template with CH(2)Cl(2). This procedure provides a variety of protein nanotubes without interlayer cross-linking. The three-cycle depositions of poly-L-arginine (PLA) and human serum albumin (HSA, M(w)=66.5 kDa) into the porous PC template (pore diameter, D(p)=400 nm) yielded well-defined (PLA/HSA)(3) nanotubes with an outer diameter of 419+/-29 nm and a wall thickness of 46+/-8 nm, revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. The outer diameter of the tubules can be controlled by the pore size of the template (200-800 nm), whereas the wall thickness is always constant, independent of the D(p) value. The (PEI/HSA)(3) (PEI: polyethylenimine) nanotubes showed a slightly thin wall of 39+/-5 nm. CD spectra of the multilayered (PEI/HSA)(n) film on a flat quartz plate suggested that the secondary structure of HSA between the polycations was almost the same as that in aqueous solution. The three-cycle LbL depositions of PLA and ferritin (M(w)=460 kDa) or myoglobin (Mb, M(w)=1.7 kDa) into the porous PC membrane also gave cylindrical hollow structures. The wall thickness of the (PLA/ferritin)(3) and (PLA/Mb)(3) nanotubes were 55+/-5 nm and 31+/-4 nm; it depends on the globular size of the protein (ferritin>HSA>Mb). The individual ferritin molecule was clearly seen in the tubular walls by SEM and TEM measurements.  相似文献   
1000.
Sulfated glycosaminoglycans were labeled with biotin to study their interaction with cells in culture. Thus, heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate and dermatan sulfate were labeled using biotin-hydrazide, under different conditions. The structural characteristics of the biotinylated products were determined by chemical (molar ratios of hexosamine, uronic acid, sulfate and biotin) and enzymatic methods (susceptibility to degradation by chondroitinases and heparitinases). The binding of biotinylated glycosaminoglycans was investigated both in endothelial and smooth muscle cells in culture, using a novel time resolved fluorometric method based on interaction of europium-labeled streptavidin with the biotin covalently linked to the compounds. The interactions of glycosaminoglycans were saturable and number of binding sites could be obtained for each individual compound. The apparent dissociation constant varied among the different glycosaminoglycans and between the two cell lines. The interactions of the biotinylated glycosaminoglycans with the cells were also evaluated using confocal microscopy. We propose a convenient and reliable method for the preparation of biotinylated glycosaminoglycans, as well as a sensitive non-competitive fluorescence-based assay for studies of the interactions and binding of these compounds to cells in culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号