首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   13篇
  国内免费   30篇
化学   258篇
数学   1篇
物理学   5篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   5篇
  2016年   11篇
  2015年   9篇
  2014年   13篇
  2013年   24篇
  2012年   13篇
  2011年   31篇
  2010年   36篇
  2009年   34篇
  2008年   13篇
  2007年   10篇
  2006年   12篇
  2005年   11篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有264条查询结果,搜索用时 109 毫秒
71.
Novel porous polymer monoliths grafted with poly{oligo[(ethylene glycol) methacrylate]‐co‐glycidyl methacrylate} brushes were fabricated via two‐step atom‐transfer radical polymerization and used as a trypsin‐based reactor in a continuous flow system. This is the first time that atom‐transfer radical polymerization technique was utilized to design and construct polymer monolith bioreactor. The prepared monoliths possessed excellent permeability, providing fast mass transfer for enzymatic reaction. More importantly, surface properties, which were modulated via surface‐initiated atom‐transfer radical polymerization, were found to have a great effect on bioreactor activities based on Michaelis–Menten studies. Furthermore, three model proteins were digested by the monolith bioreactor to a larger degree within dramatically reduced time (50 s), about 900 times faster than that by free trypsin (12 h). The proposed method provided a platform to prepare porous monoliths with desired surface properties for immobilizing various enzymes.  相似文献   
72.
In this study, metal organic framework (MOF)–organic polymer monoliths prepared via a 5-min microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the addition of various weight percentages (30–60%) of porous MOF (MIL-101(Cr)) were developed as stationary phases for capillary electrochromatography (CEC) and nano-liquid chromatography (nano-LC). Powder X-ray diffraction (PXRD) patterns and nitrogen adsorption/desorption isotherms of these MOF–organic polymer monoliths showed the presence of the inherent characteristic peaks and the nano-sized pores of MIL-101(Cr), which confirmed an unaltered crystalline MIL-101(Cr) skeleton after synthesis; while energy dispersive spectrometer (EDS) and micro-FT-IR spectra suggested homogenous distribution of MIL-101(Cr) in the MIL-101(Cr)–poly(BMA–EDMA) monoliths. This hybrid MOF–polymer column demonstrated high permeability, with almost 800-fold increase compared to MOF packed column, and efficient separation of various analytes (xylene, chlorotoluene, cymene, aromatic acids, polycyclic aromatic hydrocarbons and trypsin digested BSA peptides) either in CEC or nano-LC. This work demonstrated high potentials for MOF–organic polymer monolith as stationary phase in miniaturized chromatography for the first time.  相似文献   
73.
In this paper, a broad overview on the applications of different carbon-based nanomaterials, including nanodiamonds, fullerenes, carbon nanotubes, graphene, carbon nanofibers, carbon nanocones-disks and nanohorns, as well as their functionalized forms, in sample preparation is provided. Particular attention has been paid to graphene because many papers regarding its application in this research field are becoming available. The distinctive properties, derivatization methods and application techniques of these materials were summarized and compared. According to their research status and perspective, these nanomaterials were classified in four groups (I: graphene and carbon nanotubes; II: carbon nanofibers; III: fullerenes; and IV: nanodiamonds, carbon nanocones/disks and carbon nanohorns) and characteristics and future trends of every group were discussed.  相似文献   
74.
Sample preparation is a bottleneck in systems for chemical analysis and it is a required step in order to remove interference and preconcentrate the target analytes. Much research in recent years has focused on porous monolithic materials since they are highly permeable to liquid flow and show high mass transfer compared with common packed beds. This study has focused on the use of a glass microchip containing an inorganic silica-based monolithic material modified with octadecyl groups for preconcentration of milk proteins from skimmed cows’ milk that vary in molecular weight, hydrophobicity, and abundance. Comparison between the fabricated device and a commercial cartridge for the preconcentration of proteins in skimmed cows’ milk showed the ability of the device to successfully enrich protein mixtures from the sample. The three replicate experiments showed that the RSD of the mass to charge ratio of milk proteins ranged from 0.01 to 0.46%. In addition, it was found that there were no significant differences between the observed and reported masses of the milk proteins and the relative percentage error of the molecular masses ranged between 0.03 and 0.90%. The fact that the small amounts of sample required and short sample preparation time suggest that this new microfluidic device may be a viable alternative to existing procedures for protein extraction from real samples.  相似文献   
75.
Monolithic materials were prepared in capillaries by in situ polymerization of acrylamide, glycidyl methacrylate and N,N′-memylenebisacrylamid in the presence of trinary porogens, including 1,4-butanediol, dodecanol and dimethyl sulphoxide. With Ampholine immobilized on the monolith by chemical bonding according to their pIs, the monolithic immobilized pH gradient (M-IPG) was prepared, and applied to the separation of four standard proteins. Compared with polyacrylate based M-IPG, the hydrophilicity of the new material was improved. It could not only avoid the adsorption of proteins, but also make the synthesized procedure simple, which showed great potential in the analysis of proteins.  相似文献   
76.
Sporopollenin microparticles have been prepared form Lycopodium clavatum spores, defatted and incorporated into a porous methacrylate polymer monolith to enhance liquid chromatographic performance of different sets of small neutral molecules. A stable suspension between sporopollenin microparticles and porogenic solvents composed of 1-propanol and 1,4-butandiol has proved before preparation, and seven compositions with increasing sporopollenin microparticles were prepared inside fused silica tubing. After optimizing of the preparation conditions, the structure of the stationary phase was characterized by scanning electron microscopy, surface area analysis, thermodynamic study, short- and long-term precision, and hydrodynamic properties including mechanical stability, porosity, and permeability. The columns were successfully applied to improve the separation efficiency of different mixtures using capillary liquid chromatography. Addition of very small amount of sporopollenin microparticles to the methacrylate mixture enhanced the column efficiency from 3 to 5 times for ketonic and phenolic compounds and reduced the retention with the corresponding better resolution and peak shapes for all studied compounds.  相似文献   
77.
Tian Y  Feng R  Liao L  Liu H  Chen H  Zeng Z 《Electrophoresis》2008,29(15):3153-3159
An ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was introduced as dynamic coating of a silica monolithic column for capillary electrochromatography of phenols and nucleoside monophosphates. The run-to-run and column-to-column repeatability of migration time for six phenols were satisfactory on this column with relative standard deviation values less than 0.90 and 4.31%, respectively. Anodic electroosmotic flow (EOF) was observed, which increased with the increase of [BMIM][BF4] concentration within 120 mM and when [BMIM][BF4] concentration was above 120 mM, EOF leveled off due to the saturation of [BMIM][BF4] on the monolith. Efficient separation of phenols and nucleoside monophosphates on this dynamically coated monolithic column was obtained, compared with a dynamically coated fused-silica column and unmodified silica monolithic column. The retention behavior of uncharged phenols is mainly manipulated by hydrophobic interactions due to the presence of butyl groups, and that of nucleoside monophosphates is governed by the electrostatic attraction mechanism based on the interaction between positively charged [BMIM][BF4] moieties and negatively charged phosphate groups. In addition, silica matrix also contributes to the separation resolution.  相似文献   
78.
Tian Y  Yang F  Yang X  Fu E  Xu Y  Zeng Z 《Electrophoresis》2008,29(11):2293-2300
1,4,10,13,16-Pentaazatricycloheneicosane-9,17-dione (macrocyclic polyamine)-modified polymer-based monolithic column for CEC was prepared by ring opening reaction of epoxide groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolith with macrocyclic polyamine. Conditions such as reaction time and concentration of macrocyclic polyamine for the modification reaction were optimized to generate substantial EOF and enough chromatographic interactions. Anodic EOF was observed in the pH range of 2.0-8.0 studied due to the protonation of macrcyclic polyamine at the surface of the monolith. Morphology of the monolithic column was examined by SEM and the incorporation of macrocyclic polyamine to the poly(GMA-co-EDMA) monolith was characterized by infrared (IR) spectra. Successful separation of inorganic anions, isomeric benzenediols, and benzoic acid derivatives on the monolithic column was achieved for CEC. In addition to hydrophobic interaction, hydrogen bonding and electrostatic interaction played a significant role in the separation process.  相似文献   
79.
曾尚红  刘源 《催化学报》2008,29(5):436-440
采用微乳液法将CuO-CeO2负载于FeCrAl整体式载体上,以超声波和热振荡考察了催化剂在载体表面的粘附稳定性,并测试了CuO-CeO2/Al2O3/FeCrAl整体式催化剂对一氧化碳优先氧化反应的催化性能.使用扫描电子显微镜、X射线衍射和X射线光电子能谱等手段对所制备的催化剂进行了表征.结果表明,CuO-CeO2可以以良好的稳定性粘附于FeCrAl载体表面,且以纳米粒子形式在载体表面分布均匀.载体对催化剂的化学状态没有显著影响,制得的整体式催化剂对一氧化碳优先氧化具有较高的催化活性和高选择性,并且有良好的稳定性.  相似文献   
80.
本文采用原位聚合法制备了以四肽YPLG为模板的毛细管分子印迹整体柱,在毛细管电色谱模式下以模板分子和它的结构类似物YPGL为样品,对分子印迹聚合物的识别机理进行了研究。这两种四肽由于化学结构相似且等电点非常相近,普通的电色谱和毛细管电泳方法分离非常困难。但我们的实验表明,印迹整体柱对模板分子具有特异性识别能力,因此YPLG与YPGL之间的分离因子为1.73,分离度达3.72。实验中系统地研究了流动相中有机溶剂的含量、缓冲溶液的pH值、缓冲溶液的盐浓度以及柱温对四肽识别的影响。实验中我们观察到模板在印迹柱上具有非线性的Van’t Hoff行为,揭示可能存在多重保留机理。本研究结果表明,在毛细管电色谱模式下,分子印迹整体柱的分子识别主要决定于样品与印迹聚合物之间的氢键作用以及印迹孔穴的三维结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号