首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2‐bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein‐imprinted poly(N‐isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy of the cross‐sections of imprinted monoliths confirmed the formation of dense poly(N‐isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this “smart” imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH.  相似文献   

2.
Both the separation behavior and the structure of a polymer monolith column depends on both the reaction solution composition and the polymerization conditions. In photoinitiated low‐temperature polymerization, polymerization temperature, irradiation intensity, and polymerization time were key factors to control the monolith characteristics. In this study, the effect of polymerization time on the chromatographic, material, and chemical characteristics of poly(butyl methacrylate‐co‐ethylene dimethacrylate) monoliths was studied using pyrolysis‐gas chromatography, Raman spectroscopy, inverse size exclusion chromatography, scanning electron microscopy, and chromatographic methods. Both butyl methacrylate and ethylene dimethacrylate monomers were incorporated into the monolith as the polymerization time increased, and it resulted in increases in both the flow resistance (decrease in both permeability and total/through pore porosities) and retention factors. The longer polymerization time led to lower relative amounts of free methacrylate functional groups in the monolith, i.e. cross‐linking was enhanced. The increase of the polymerization time from 8 to 12 min significantly reduced the separation efficiency for the retained analyte, whereas an increase in the fraction of the mesoporosity was observed.  相似文献   

3.
An ionic‐liquid‐based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless‐steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross‐linking agent, and polyethylene glycol 200 and isopropanol as co‐porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption–desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic‐liquid‐based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m2/g. Compared to a non‐ionic‐liquid‐based monolith prepared under the same conditions, the ionic‐liquid‐based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research.  相似文献   

4.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

5.
A series of poly(amino (meth)acrylate) brushes, poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA), poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA), poly(2‐(tert‐butylamino)ethyl methacrylate) (PTBAEMA), has been synthesized via surface‐confined controlled/living radical polymerizations using surface‐confined initiator from silane self‐assembled monolayers (SAMs) on silicon (Si) wafer substrates. Chemical methods and efficacies for two types of living radical polymerization, atom transfer radical (ATRP) and single electron transfer (SET‐LRP), are described and contrasted for the surface confined polymerization of poly(amino (meth)acrylate)s. Effects of solvent, catalyst/ligand system, and temperature on polymerization success were examined. Chemical compositions after each reaction step were characterized with FTIR spectroscopy, contact angle goniometry, and X‐ray photoelectron spectroscopy while the SAM and polymer brush thicknesses were measured with spectroscopic ellipsometry. For the first time, this study demonstrates successful surface‐confined polymerization of a series of poly(amine (meth)acrylate) brushes from Si‐SAM substrates using a copper metal electron donor catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6552–6560, 2009  相似文献   

6.
A broad variety of monolithic macroporous polymers with both controlled chemistry and porous properties was prepared using UV‐initiated free‐radical polymerization. The chemistry of the monoliths is defined by the composition of the monomer mixture used for the polymerization. The use of functional methacrylate monomers such as glycidyl methacrylate, 2‐hydroxyethyl methacrylate, butyl methacrylate, 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid, and [2‐(methacryloyloxy) ethyl] trimethylammonium chloride enabled the preparation of monoliths with reactive, hydrophilic, hydrophobic, and ionizable functionalities, respectively. The porous properties of these monoliths were mainly affected by the choice of the porogenic solvent system. Because the UV polymerization was carried out at room temperature, even low molecular weight alcohols and other low boiling point solvents could safely be used to create a versatile series of binary porogenic mixtures. Monoliths were prepared in spatially defined positions using the photolithographic technique within a fused silica capillary and on microfluidic chips, and the former was demonstrated with the separation of derivatized amines by means of capillary electrochromatography in the reversed‐phase mode. Similarly, a monolith prepared in the microchip format was used to demonstrate a microextraction with enrichment of a solution of green fluorescent protein by a factor of 1000. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 755–769, 2002; DOI 10.1002/pola.10155  相似文献   

7.
An efficient and novel one‐pot process is developed to immobilize the atom transfer radical polymerization (ATRP) initiators onto the surface of fully pyrolyzed carbon hard spheres (CHSs) via a radical trapping process from the in situ thermal decomposition of bis(bromomethylbenzoyl)peroxide. The CHSs do not require any additional preparative treatment prior to the initiator immobilization. Styrene and methyl methacrylate are polymerized onto initiator‐immobilized CHSs by surface‐initiated atomic transfer radical polymerization (SI‐ATRP). Samples are characterized using Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. These methods of characterization confirmed that all the CHSs are coated with a uniform layer of grafted polymer. This efficient, one‐pot immobilization of ATRP‐initiators represents an exceptionally simple route for the rapid preparation of various polymer‐coated carbon‐based nanomaterials using SI‐ATRP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3314–3322  相似文献   

8.
9.
High‐capacity microcellular monoliths were prepared by a two‐step process, including the synthesis of a bromoester‐functionalized scaffold by the copolymerization of a highly concentrated emulsion and an in situ surface polymerization of methyl methacrylate with atom transfer radical polymerization. The influence of various parameters, such as the feed ratio, the concentration of immobilized bromoester groups, and the presence of a spacer group on the poly(methyl methacrylate) loading, was studied. Monoliths with capacities of up to 7 mmol g?1 were obtained. Thermogravimetric analyses, scanning electron microscopy experiments, and mercury intrusion porosimetry measurements were used for the characterization of the final materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1216–1226, 2004  相似文献   

10.
《先进技术聚合物》2018,29(7):2110-2120
A reactive monolith based on the polymerization of 3‐chloro‐2‐hydroxypropyl methacrylate, (HPMA‐Cl), with a crosslinking agent, ethylene glycol dimethacrylate (EDMA), was synthesized and post‐functionalized with a macromolecular ligand polyethyleneimine. Monolithic columns with controlled permeability and pore structure were prepared by free radical polymerization in the presence of a binary porogenic mixture of isopropanol and decanol. The presence of chloropropyl functionality in the pristine monolith allowed the synthesis of a post‐fuctionalized monolith carrying cationic groups that was used to control the magnitude of electroosmotic flow (EOF) in electrochromatographic separation. In the synthesis of pristine monoliths, the feed concentration of functional monomer (ie, HPMA‐Cl) was changed between 30 and 60 v/v % for obtaining cationic monoliths providing satisfactory electrochromatographic separation. The best electrochromatographic performance was obtained with the polyethyleneimine functionalized monolith prepared by using the pristine monolith obtained by 60% (v/v) monomer concentration. This monolith was used in reversed phase and hydrophilic interaction capillary electrochromatography modes for the separation of alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, and nucleosides, using mobile phases with low acetonitrile (ACN) contents ranging between 20% and 35% (v/v). This ACN range was remarkably lower than the content of ACN used on the hydrophilic polymethacrylate‐based monoliths reported previously (ie, >90%). The plate heights up to 5.3 μm were obtained for the separation of nucleosides with the environmental friendly mobile phases whose ACN contents were also remarkably lower than that of similar polymethacrylate‐based monoliths.  相似文献   

11.
In this work, a postpolymerization surface modification approach is reported that provides pendent thiol functionality along the polymer brush backbone using the photolabile protection chemistry of both o‐nitrobenzyl and p‐methoxyphenacyl thioethers. Poly(2‐hydroxyethyl methacrylate) (pHEMA) brushes were synthesized via surface‐initiated atom transfer radical polymerization, after which the pHEMA hydroxyl groups were esterified with 3‐(2‐nitrobenzylthio)propanoic acid or 3‐(2‐(4‐methoxyphenyl)‐2‐oxoethylthio)propanoic acid to provide the photolabile protected pendent thiols. Addressing the protecting groups with light not only affords spatial control of reactive thiol functionality but enables a plethora of thiol‐mediated transformations with isocyanates and maleimides providing a modular route to create functional polymer surfaces. This concept was extended to block copolymer brush architectures enabling the modification of the chemical functionality of both the inner and outer blocks of the block copolymer surface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
In this article we described our new approach to the polymer monolith with its morphology tailored for HPLC application to small solutes such as drug candidates. We prepared polymer monoliths based on glycerin 1,3‐dimethacrylate, GDMA with a bicontinuous structure by in situ photoinitiated free radical polymerization (UV irradiation at 365 nm). Our photopolymerization was carried out with a monodispese ultra high molecular weight polystyrene solution in chlorobenzene uniquely formulated as a porogen. The poly‐GDMA monoliths in bulk, rod and capillary thus prepared showed a bicontinuous network‐like structure featured by their fine skeletal thickness nearly in sub μm size. This monolithic structure was considered as a time‐evolved morphology frozen by UV‐irradiation via viscoelastic phase separation induced by the said porogenic polystyrene solution. According to our μHPLC measurement with acetophenone as a model solute, the UV prepared poly‐GDMA capillary demonstrated a much shaper elution profile affording higher column efficiency and permeability as compared with the thermally prepared capillary of the same bore size. Our investigation showed experimentally that poly‐GDMA monoliths with a well‐defined bicontinuous structure could be prepared reproducibly by photoinitiated radical polymerization via viscoelastic phase separation using the said unique porogen. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4651–4673, 2008  相似文献   

13.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

14.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

15.
A polymer monolith microextraction method coupled with high‐performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused‐silica capillaries using thermal initiation free‐radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross‐linker, cyclohexanol, and 1‐dodecanol as the porogen. N‐Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate‐coN‐methylolacrylamide‐co‐ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier‐transform infrared spectra, and X‐ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high‐performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9?104.7% when applied to the determination of the adenosines in five royal jelly samples.  相似文献   

16.
A nondestructive method was developed for grafting and retrieving polymer brushes from single‐walled carbon nanotubes (SWCNT)s based on mussel‐inspired chemistry. Thermo‐responsive polymer brushes were grafted on SWCNTs by coating the tubes with polydopamine as a reactive underlayer and sequential surface‐initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate (OEGMA, Mn = 475) and 2‐(2'‐methoxyethoxy)ethyl methacrylate (MEO2MA). Copolymer brushes were retrieved from the SWCNTs using 1 M NaOH to destroy the crosslinked polydopamine coating, and after that, the pristine properties of the SWCNTs were preserved. The low critical solution temperature (LCST) and molecular weight of the copolymer were measured using a nephelometer and gel permeation chromatograph, respectively. The loading and release behavior of Rhodamine 6G on responsive polymer‐grafted SWCNTs demonstrates that the copolymer brushes confer the SWCNTs an LCST dependence. This method can accurately confirm the molecular weights and polydispersity of stimuli‐responsive polymers grafted on any other nanoparticles and predict their controlled release behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1807–1814  相似文献   

17.
A novel organic monolith was successfully fabricated by a one‐pot thiol‐ene click reaction of triallyl isocyanurate with pentaerythritol tetrakis‐(2‐mercaptoacetate) and mercaptopropionic acid in the presence of porogens. We investigated the effects of the ratio of monomer and cross‐linking agent, the type and ratio of porogen, and click reaction temperature on the permeability and morphology of the prepared poly triallyl isocyanurate‐co‐pentaerythritol tetrakis (2‐mercaptoacetate) monoliths. The monolith was also characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that the monoliths had continuous porous framework, good permeability, and high mechanical stability. A series of analytes with different properties such as alkylbenzenes, polycyclic aromatic hydrocarbons, anilines, and phenols were used to evaluate the electrochromatographic performance of the prepared monoliths in pressurized capillary electrochromatography. The prepared polymer monolith showed typical reversed‐phase electrochromatographic behavior for hydrophobic substances. Moreover, the prepared monolith showed a mix of reversed‐phase and cation exchange interaction modes for basic aniline compounds. The minimum plate height of the monolith was 8.76 μm (132 100 plates/m) for propylbenzene. These results demonstrated that one‐pot thiol‐ene click chemistry can provide a simple and reliable method for the preparation of organic monoliths.  相似文献   

18.
The novel hydrophobic coating material was received for the first time by a two‐step synthetic route. Firstly, the 15‐functional brominated macroinitiator was prepared by the esterification methodology. Next step covers synthesis of star‐like polymers by poly(n‐butyl acrylate) (PBA) arms polymerization via three low‐ppm atom transfer radical polymerization (ATRP) approaches including application of copper and silver wire in SARA and ARGET ATRP, respectively, as driving forces in redox cycle of catalyst, and an external stimulus in the form of electric current (seATRP) as the third approach in copper(II) regeneration system. As expected, the electrochemically mediated technique allows synthesis of tannic acid‐inspired coating polymers in precisely controlled manner during the entire polymerization process, proved by linear first‐order kinetics plot in contrast to above‐mentioned methods, low dispersity (Ð = 1.18) of star‐shaped polymers, and high efficiency of initiation (? i = 81%) determined after detaching of polymers side arms. Macromolecules received by all low‐ppm ATRP solutions were characterized by preserved chain‐end functionality (theoretical dead chain fraction; DCFtheo <1%). Adhesive and hydrophobic properties of received polymer materials were investigated by contact angles (θ) and free surface energy (FSE) calculations. Prepared polymer films besides excellent hydrophobic properties have great potential as a self‐healing solution.  相似文献   

19.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

20.
Proline‐based polymer monoliths were synthesized via green protocol using lipase‐catalyzed esterification of methacrylic acid and 4‐hydroxyproline. Prolinyl methacrylate thus prepared was polymerized in situ as crosslinked monolith. The monolith was characterized by various techniques such as Fourier transform infrared, 1H‐NMR, 13C‐NMR, scanning electron microscopy (SEM), X‐ray diffraction (XRD), and nitrogen analysis and used as catalyst in aldol reactions. The swelling behavior of the monolith was also studied as function of various external parameters like pH and temperature. The monoliths synthesized with 1% crosslinker was selected as candidate monolith for use as catalyst in aldol reaction, which was studied as a function of time, temperature, substrate structure, and amount of water:EtOH. The catalysts exhibited high efficiency in the cross aldol reaction, especially with the aromatic substrates having electron withdrawing substituent, and also good activity retention was observed when recycleability was studied up to five cycles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1007–1015, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号