首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   68篇
  国内免费   68篇
化学   523篇
晶体学   6篇
力学   30篇
综合类   1篇
数学   80篇
物理学   37篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   11篇
  2019年   20篇
  2018年   15篇
  2017年   20篇
  2016年   21篇
  2015年   32篇
  2014年   28篇
  2013年   70篇
  2012年   29篇
  2011年   39篇
  2010年   19篇
  2009年   43篇
  2008年   23篇
  2007年   30篇
  2006年   21篇
  2005年   30篇
  2004年   32篇
  2003年   36篇
  2002年   42篇
  2001年   40篇
  2000年   29篇
  1999年   24篇
  1998年   7篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
排序方式: 共有677条查询结果,搜索用时 18 毫秒
71.
Clusters with diverse structures and functions have been used to create novel cluster‐assembled materials (CAMs). Understanding their self‐assembly process is a prerequisite to optimize their structure and function. Herein, two kinds of unlike organo‐functionalized inorganic clusters are covalently linked by a short organic tether to form a dumbbell‐shaped Janus co‐cluster. In a mixed solvent of acetonitrile and water, it self‐assembles into a crystal with a honeycomb superstructure constructed by hexagonal close‐packed cylinders of the smaller cluster and an orderly arranged framework of the larger cluster. Reconstruction of these structural features via coarse‐grained molecular simulations demonstrates that the cluster crystallization and the nanoscale phase separation between the two incompatible clusters synergistically result in the unique nano‐architecture. Overall, this work opens up new opportunities for generating novel CAMs for advanced future applications.  相似文献   
72.
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.  相似文献   
73.
74.
75.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
76.
77.
A double‐layer hollow fiber is fabricated where an isoporous surface of polystyrene‐block‐poly(4‐vinylpyridine) is fixed on a support layer by co‐extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope‐energy‐dispersive X‐ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in‐process H‐bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double‐layer hollow fiber.

  相似文献   

78.
In prostate cancer, hormone therapy via leuprolide acetate drug (LUP) is used to lower the level of testosterone down to castration level to effectively control the development of prostate cancer. The objective of this study was to evaluate the effective parameters in degradation and controlled release of an injectable in situ formed polymeric implant, loaded with leuprolide acetate, in order to achieve an optimum formulation for sustained drug release for 90 days with minimum burst release. The main problem associating with such implants is their high burst release. Designing an injectable implant with sustained and minimum burst release has thus become an attractive challenge in drug delivery field. Effects of type of poly(lactic‐co‐glycolic acid) 75:25 copolymers (RG752, RG756) and addition of nano‐hydroxyapatite (HA) particles on degradation rates of the implants and release profiles were examined in vitro and in vivo in a rabbit animal model. Results showed that implants containing polymers with higher molecular weights had significantly lower weight loss and molecular weight reduction. Adding nanoparticles of hydroxyapatite into poly(lactic‐co‐glycolic acid) implants caused further reduction in degradation rates, leading to a more sustained drug release in vivo, with reduced burst release. Different conventional kinetic models were applied to drug release and degradation data. The degradation data fit well to the first‐order degradation model. Higuchi model was the best kinetic release model fitted to the experimental in vitro release data. This study led to an optimum formulation (RG756:RG752 3:1 + 5% HA) with sustained leuprolide release and testosterone suppression over a 90‐day period with significant decrease of burst release phase (50%, p < 0.001) compared with the conventional Eligard formulation. The histopathology test showed that the formulated implant had no effects of toxicity or tissue necrosis in organs of the animal model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
79.
A specially designed long open tubular capillary column (50 μm internal diameter and 112 cm effective length) was prepared by fabrication of a thin three‐component co‐polymer layer on the inner surface of silica capillary. A pretreated silica capillary was reacted with 4‐(chloromethyl)phenyl isocyanate in the presence of dibutyltin dichloride as catalyst followed by sodium diethyl dithiocarbamate. Then a thin polymer layer was made on the inner surface of capillary by reversible addition‐fragmentation transfer polymerization of styrene, N‐phenylacrylamide, and methacrylic acid. A carefully adjusted formulation of reaction mixture and elaborated procedures were adopted to secure formation of the co‐polymer layer of enhanced separation performance. The co‐polymer immobilized open tubular capillary column was used for the separation of a synthetic mixture of five peptides and excellent separation efficiency (over 1.7 million per column) was obtained in the capillary electrochromatography mode. Such excellent separation efficiencies of ca. 1 m column have not been obtained in the isocratic elution mode so far. The column was also used for separation of the peptides in the liquid chromatography mode to show very good separation efficiency (average 286 700 per column).  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号