首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12946篇
  免费   1668篇
  国内免费   2327篇
化学   12906篇
晶体学   327篇
力学   245篇
综合类   117篇
数学   108篇
物理学   3238篇
  2024年   44篇
  2023年   194篇
  2022年   390篇
  2021年   584篇
  2020年   664篇
  2019年   564篇
  2018年   484篇
  2017年   479篇
  2016年   672篇
  2015年   595篇
  2014年   549篇
  2013年   1136篇
  2012年   695篇
  2011年   752篇
  2010年   635篇
  2009年   711篇
  2008年   716篇
  2007年   850篇
  2006年   797篇
  2005年   720篇
  2004年   660篇
  2003年   547篇
  2002年   454篇
  2001年   363篇
  2000年   375篇
  1999年   344篇
  1998年   285篇
  1997年   270篇
  1996年   244篇
  1995年   192篇
  1994年   170篇
  1993年   152篇
  1992年   149篇
  1991年   81篇
  1990年   68篇
  1989年   49篇
  1988年   54篇
  1987年   46篇
  1986年   45篇
  1985年   41篇
  1984年   24篇
  1983年   11篇
  1982年   13篇
  1981年   18篇
  1980年   14篇
  1979年   13篇
  1977年   6篇
  1976年   6篇
  1974年   5篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
The spin polarization of carbon nanomaterials is crucial to design spintronic devices. In this paper, the first-principles is used to study the electronic properties of two defect asymmetric structures, Cap-(9, 0)-Def [6, 6] and Cap-(9, 0)-Def [5, 6]. We found that the ground state of Cap-(9, 0)-Def [6, 6] is sextet and the ground state of Cap-(9, 0)-Def [5, 6] is quartet, and the former has a lower energy. In addition, compared with Cap-(9, 0) CNTs, the C adatom on C30 causes spin polarization phenomenon and Cap-(9, 0)-Def [6, 6] has more spin electrons than Cap-(9, 0)-Def [5, 6] structure. Moreover, different adsorb defects reveal different electron accumulation. This finding shows that spin polarization of the asymmetric structure can be adjusted by introducing adatom defects.  相似文献   
922.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   
923.
Carbon foams have gained significant attention due to their tuneable properties that enable a wide range of applications including catalysis, energy storage and wastewater treatment. Novel synthesis pathways enable novel applications via yielding complex, hierarchical material structure. In this work, activated carbon foams (ACFs) were produced from waste polyurethane elastomer templates using different synthesis pathways, including a novel one-step method. Uniquely, the produced foams exhibited complex structure and contained carbon microspheres. The ACFs were synthesized by impregnating the elastomers in an acidified sucrose solution followed by direct activation using CO2 at 1000 ℃. Different pyrolysis and activation conditions were investigated. The ACFs were characterized by a high specific surface area (SBET) of 2172 m2/g and an enhanced pore volume of 1.08 cm3/g. Computer tomography and morphological studies revealed an inhomogeneous porous structure and the presence of numerous carbon spheres of varying sizes embedded in the porous network of the three-dimensional carbon foam. X-ray diffraction (XRD) and Raman spectroscopy indicated that the obtained carbon foam was amorphous and of turbostratic structure. Moreover, the activation process enhanced the surface of the carbon foam, making it more hydrophilic via altering pore size distribution and introducing oxygen functional groups. In equilibrium, the adsorption of methylene blue on ACF followed the Langmuir isotherm model with a maximum adsorption capacity of 592 mg/g. Based on these results, the produced ACFs have potential applications as adsorbents, catalyst support and electrode material in energy storage systems.  相似文献   
924.
To investigate the effects of oxygen-containing functional groups on the adsorption of volatile organic compounds (VOCs) with different polarity, oxygen-rich porous carbon materials (OPCs) were synthesized by heat treatment of glucose/potassium oxalate material. The carbon material had a large specific surface area (1697 m2 g−1) and a high oxygen content (18.95 at.%). OPC exhibited high adsorption capacity of toluene (309 mg g−1) and methanol (447 mg g−1). The specific surface area and total pore volume determined the adsorption capacity of toluene and methanol at the high-pressure range, while the oxygen-containing groups became the main factor affecting the methanol adsorption at the low-pressure range due to the hydrogen bond interaction through the density functional theory (DFT) calculations. This study provides an important hint for developing a novel O-doped adsorbent for the VOCs adsorption applications and analyzing the role of oxygen-containing groups in the VOCs adsorption under the low-pressure range.  相似文献   
925.
Being a close analogue of amflutizole, methyl 4‐amino‐3‐phenylisothiazole‐5‐carboxylate (C11H10N2O2S) was assumed to be capable of forming polymorphic structures. Noncentrosymmetric and centrosymmetric polymorphs have been obtained by crystallization from a series of more volatile solvents and from denser tetrachloromethane, respectively. Identical conformations of the molecule are found in both structures. The two polymorphs differ mainly in the intermolecular interactions formed by the amino group and in the type of stacking interactions between the π‐systems. The most effective method for revealing packing motifs in structures with intermolecular interactions of different types (hydrogen bonding, stacking, dispersion, etc.) is to study the pairwise interaction energies using quantum chemical calculations. Molecules form a column as the primary basic structural motif due to stacking interactions in both polymorphic structures under study. The character of a column (straight or zigzag) is determined by the orientations of the stacked molecules (in a `head‐to‐head' or `head‐to‐tail' manner). Columns bound by intermolecular N—H…O and N—H…N hydrogen bonds form a double column as the main structural motif in the noncentrosymmetric structure. Double columns in the noncentrosymmetric structure and columns in the centrosymmetric structure interact strongly within the ab crystallographic plane, forming a layer as a secondary basic structural motif. The noncentrosymmetric structure has a lower density and a lower (by 0.59 kJ mol?1) lattice energy, calculated using periodic calculations, compared to the centrosymmetric structure.  相似文献   
926.
A fibrous boron chelator containing glycidol moiety (PE/PP-g-PVAm-G) was prepared by radiation induced grafting of N-vinylformamide (NVF) onto polyethylene/polypropylene (PE/PP) non-woven sheet followed by hydrolysis and immobilization of glycidol moiety. The glycidol density was controlled by optimization of the reaction parameters using the Box-Behnken design of response surface methodology (RSM). The properties of the PE/PP-g-PVAm-G were evaluated using Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive x-ray (EDX) analysis, X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). A maximum glycidol density yield of 5.0 mmol·g−1 was obtained with 11.8 vol%, 78.9 °C and 109.4 min for glycidol concentration, reaction temperature and time, respectively. The isotherms, kinetics, and thermodynamic behavior of boron adsorption on the optimized chelator were investigated. The boron adsorption was pH-dependent and attained a maximum adsorption capacity of 25.7 mg·g−1. The equilibrium isotherm proceeded by Redlich–Peterson model whereas the kinetics was best expressed by the pseudo-second-order equation. The thermodynamic analysis revealed that boron adsorption is endothermic and spontaneous. The fibrous chelator demonstrated high boron selectivity and strong resistance to foreign ions with uncompromised regeneration efficiency after five adsorption/desorption cycles. The PE/PP-g-PVAm-G chelator seems to be very promising for boron removal from aqueous media.  相似文献   
927.
Collector OA, oleic acid, is widely used industrially for fluorite flotation. Low selectivity, dispersibility and collecting capability of the OA collector are always observed. In this study, compared with flotation of dolomite, a collector mixture of OA and SPE (styrylphenol polyoxyethylene ether) demonstrated significantly better performances for the fluorite. An optimal mass ratio 4 : 1 OA : SPE was found, and the recovery of fluorite was increased from over 85 % to more than 94 % compared with pure OA. Furthermore, the dosage of the collector agent was reduced from 50 mg mL−1 to 20 mg mL−1, which did not negatively impact the recovery of dolomite. The results from the contact angle tests indicated that SPE selectively increased the surface hydrophobicity of fluorite but had little effect on dolomite. Besides, zeta potential measurements and IR analyses revealed that the addition of SPE led to strong chemical adsorption on the surface of fluorite, resulting in a significant difference in the flotation performances of the two minerals. Therefore, SPE-emulsified OA is corroborated to prompt more selectivity and collecting capability on flotation of fluorite over dolomite.  相似文献   
928.
Off-nucleus isotropic magnetic shielding (σiso(r)) and multi-points nucleus independent chemical shift (NICS(0-2 Å)) index were utilized to find the impacts of the isomerization of gas-phase furfuraldehyde (FD) on bonding and aromaticity of FD. Multidimensional (1D to 3D) grids of ghost atoms (bqs) were used as local magnetic probes to evaluate σiso(r) through gauge-including atomic orbitals (GIAO) at density functional theory (DFT) and B3LYP functional/6-311+G(d,p) basis set level of theory. 1D σiso(r) responses along each bond of FD were examined. Also, a σiso(r) 2D-scan was performed to obtain σiso(r) behavior at vertical heights of 0–1 Å above the FD plane in its cis, transition state (TS) and trans forms. New techniques for evaluating 2D σiso(r) cross-sections are also included. Our findings showed that bonds in cyclic and acyclic parts of FD are dissimilar. Unlike the C−O bond of furanyl, the C=O bond of the formyl group is magnetically different. C−C and C−H bonds in furanyl are found similar to those in aromatic rings. A unique σiso(r) trend was observed for the C2−C6 bond during FD isomerization. Based on NICS(0-2 Å) values, the degree of aromaticity follows the order of cis FD<trans FD<furan<TS FD.  相似文献   
929.
The first representative of a new class of charge transfer complexes for organic semiconductors was synthesized. The reaction of p-nitroaniline (PNA) with [1,10]-phenanthroline-5,6-dione (PD) results in the formation of a stable molecular charge transfer (CT) complex PNA3-PD2 in a ratio of 3:2. The structure of the molecular CT complex PNA3-PD2 was established by X-ray diffraction studies. Using the density functional theory method, it is shown that several types of intermolecular interactions are realized in the complex: between the PNA amino group and the nitro group of another PNA molecule, carbonyl groups, and PD nitrogen atoms. Complex PNA3-PD2 is stable only in solid form. The diffuse reflectance UV–vis spectrum of PNA3-PD2 crystal powder is characterized by the intense weakly structured long-wavelength absorption band up to 650 nm. Quantum chemical calculations of the electronic structure have shown that the complex PNA3-PD2 is a straight-band semiconductor with a band gap of 2.11 eV.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号