首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, we report designing a new Δ (delta-shaped) proton sponge base of 4,12-dihydrogen-4,8,12-triazatriangulene (compound 1 ) and calculating its proton affinity (PA), aromatic stabilization, natural bond orbital (NBO), electron density ρ(r), Laplacian of electron density ∇2ρ(r), (2D-3D) multidimensional off-nucleus magnetic shielding (σzz(r) and σiso(r)), and scanning nucleus-independent chemical shift (NICSzz and NICS). Density functional theory (DFT) at B3LYP/6-311+G(d,p), ωB97XD/6-311+G(d,p), and PW91/def2TZVP were used to compute the magnetic shielding variables. In addition, relevant bases like pyridine, quinoline, and acridine were also studied and compared. The protonation of compound 1 yields a highly symmetric carbocation of three Hückel benzenic rings. Comparing our findings of the studied molecules showed that compound 1 precedes others in PA, aromatic isomerization stabilization energy, and basicity. Therefore, the basicity may be enhanced when a conjugate acid gains higher aromatic features than its unprotonated base. Both multidimensional σzz(r) and σiso(r) off-nucleus magnetic shieldings outperformed electron-based techniques and can visually monitor changes in aromaticity that occur by protonation. The B3LYP/6-311+G(d,p), ωB97XD/6-311+G(d,p), and PW91/def2TZVP levels showed no significant differences in detailing isochemical shielding surfaces.  相似文献   

2.
When close to the molecular plane, the behavior of nucleus independent chemical shift (NICS) as a function of the distance from the molecular plane deviates from its behavior at larger distances. By using a dense grid of NICS-probes (BQs) it is shown that, when close to the molecular plane, maximal (absolute) NICS values are obtained above the atoms. These maxima move towards the center as the grid is elevated until the (absolute) maximum NICS is obtained at the center and stay there when the grid is further elevated. It is shown that this behavior is a result of the current density, which is influenced by the electron density, according to the Biot-Savart law, which, in turn, causes the induced magnetic field measured by the NICS. It is thus concluded that if magnetic aromaticity is studied, the NICS calculations should be carried out at a large enough distance so that only the π-ring current affects the NICS. At distances ≥2 Å, NICS(r)π,zz=A+B*Cr. Using non-linear correlation for obtaining A, B and C and extrapolate to NICS(1)π,zz and NICS(1.7)π,zz is recommended as measures for aromaticity.  相似文献   

3.
[Yb(OAr)2(μ‐OMe)(DME)]2 ( 1 ) (OAr = 2,6‐di‐iso‐propylphenolate) was synthesised via a redox transmetallation ligand exchange reaction between ytterbium metal, diphenylmercury and 2,6‐di‐isopropylphenol in DME. The source of the methoxy groups is from cleavage of DME, and the C‐O bond activation is unexpected given that the reaction was undertaken at ambient temperature. Each Yb3+ metal ion in 1 is six coordinate, and the coordination arrangement around each metal ion is distorted trigonal antiprismatic with Yb‐O(OMe) bond lengths (2.191(2) and 2.258(2) Å) shorter than the Yb‐O(aryloxide) bond distances (2.094(2) and 2.074(2) Å).  相似文献   

4.
We carried out a series of zeroth‐order regular approximation (ZORA)‐density functional theory (DFT) and ZORA‐time‐dependent (TD)‐DFT calculations for molecular geometries, NMR chemical shifts, nucleus‐independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2(tBuMe2Si)2C4PbL1L2 (L1, L2 = tetrahydrofuran, Pyridine, N‐heterocyclic carbene), and their model molecules. We mainly discussed the Lewis‐base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n‐Huckel rule is applied to the fractional π‐electron number. The calculated 13C‐ and 207Pb‐NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the 13C‐NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the 207Pb‐NMR chemical shifts and J[Pb‐C] but also in the 13C‐NMR chemical shifts of carbons adjacent to the lead atom. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Abstract

[Cp2Fe2(CO)2(μ-CO)(μ-CHP(OPh)3)+][BF? 4] crystallizes in the centrosymmetric monoclinic space group P21/n with a = 12.553(7) Å, b = 16.572(11) Å, c = 15.112(8) Å, β = 100.00(4)°, V = 3096(3) Å3 and D(calcd.) = 1.579 g/cm3 for Z = 4. The structure was refined to R(F) = 5.83% for 1972 reflections above 4σ(F). The cation contains two CpFe(CO) fragments linked via an iron—iron bond (Fe(1)—Fe(2) = 2.544(3)Å), a bridging carbonyl ligand (Fe(1)—C(4) = 1.918(1) Å, Fe(2)—C(4) = 1.946(12)Å) and a bridging CHP(OPh)3 ligand (Fe(1)—C(1) = 1.980(9)Å, Fe(2)—C(1) = 1.989(8)Å). Distances within the μ-CHP(OPh)3 moiety include a rather short carbon—phosphorus bond [C(1)—P(1) = 1.680(10)Å] and P—O bond lengths of 1.550(7)–1.579(6)Å. The crystal is stabilized by a network of F…H—C interactions involving the BF? 4 anion.

[Cp2Fe2(CO)2(μ-CO)(μ-CHPPh3)+][BF? 4], which differs from the previous compound only in having a μ-CHPPh3 (rather than μ-CHP(OPh)3) ligand, crystallizes in the centrosymmetric monoclinic space group P21/c with a = 11.248(5)Å, b = 13.855(5)Å, c = 18.920(7)Å, β = 96.25(3)°, V = 2931(2)Å3 and D(calcd.) = 1.559 g/cm3 for Z = 4. This structure was refined to R(F) = 4.66% for 1985 reflections above 4σ(F). Bond lengths within the dinuclear cation here include Fe(1)-Fe(2) = 2.529(2)Å, Fe(1)—C(3) = 1.904(9) Å and Fe(2)—C(3) = 1.911(8) Å (for the bridging CO ligand) and Fe(1)—C(1P) = 1.995(6) Å and Fe(2)—C(1P) = 1.981(7) Å (for the bridging CHPPh3 ligand). Distances within the μ-CHPPh3 ligand include a longer carbon—phosphorus bond [C(1P)—P(1) = 1.768(6)Å] and P(1)—C(phenyl) = 1.797(7)–1.815(8) Å.  相似文献   

6.
A number of two-deck dicationic 3a,6a-diaza-1,4-diphosphapentalenes (DDP)2X2 (X=halogen or complex ion) have been characterized. Interdeck distances P(1)⋅⋅⋅P(3) and P(2)⋅⋅⋅P(4) in crystal structures, as a rule, significantly exceed the sum of covalent radii, however they are still within the sum of van der Waals radii. The 31P NMR data indicate that phosphorus atoms are equivalent in solution even at low temperatures (233 K). Based on DFT calculations, the formation of two equivalent P−P covalent bonds (<2.4 Å) is energetically unfavorable, despite the absence of steric barriers. The total energy of the model dication as a function of the P⋅⋅⋅P separation has a minimum at the P−P distance of 2.85 Å. This distance corresponds to the highest aromaticity index in the interdeck space (NICS(1.0)=−20.72). The energy of interdeck interactions is estimated at 10–15 kcal/mol.  相似文献   

7.
The M@C36 compounds form a family of small endohedral metallofullerenes. Recently, these have been detected as the smallest endohedral compounds formed with Sc, Y, and La. For the first time, these compounds are studied theoretically. Calculations obtained at the dispersion‐corrected DFT level PBE‐D3(BJ)/def2‐TZVP agree admirably with experimental results. The zero‐point energy corrected binding energies can explain the lower abundance of La@C36 in comparison with Sc@C36 and Y@C36. Their small HOMO‐LUMO gaps denote high reactivity. The bond between Y and Sc with the cage is mostly covalent. In contrast, La is located at the fullerene's center with an ionic interaction; all metals transferred charge to the cage. Furthermore, La@C36 was found in doublet state and the others preferred the quartet state. To conclude, according to the analysis of aromaticity performed by the NICS(0)iso index, the insertion of none of these metals increase the aromaticity.  相似文献   

8.
用密度泛函理论(DFT)研究了As-5、[As5M]-和[As5MAs5]2- (M=Ti, Zr, Hf)的结构、频率、能量以及芳香性, 详细讨论了体系中不同类型的键和电子如化学键、孤对电子、核电子等对总的核独立化学位移(NICS)的影响. 结果表明, As-5、[As5M]-和[As5MAs5]2-的基态结构分别具有D5h、C5v和D5h对称性, 而且都具有芳香性. As-5 (D5h)的芳香性主要来源于As—As π键和As—As σ键的作用. [As5M]-(C5v)中各种As—M键的NICS分割值占主要优势, 其次是As—As之间形成的σ键. [As5TiAs5]2-(D5h)中, As—As π键的作用占主要优势. [As5ZrAs5]2-(D5h)中, As—As π键对体系总的NICS贡献相对减小, 而As—Zr键的作用增强. [As5HfAs5]2-(D5h)的芳香性主要来自As—Hf键的作用.  相似文献   

9.
We report on nucleus-independent magnetic shielding (NICS) scans over the centers of six- and five-membered rings in selected metal phthalocyanines (MPc) and fullerene C60 for more accurate characterization of local aromaticity in these compounds. Detailed tests were conducted on model aromatic molecules including benzene, pyrrole, indole, isoindole, and carbazole and subsequently applied to H2Pc, ZnPc, Al(OH)Pc, and CuPc. Similar behavior of three selected magnetic probes, Bq, 3He, and 7Li+, approaching perpendicularly the ring centers, was observed. For better visualization of shielding zone over the centers of aromatic rings, we introduced a simple mathematical procedure: the first and second derivatives of scan curves with respect to magnetic probe position enabled their additional examination. It allowed an easier localization of curve minimum and discrimination between areas in space varying by the magnetic field magnitude and to illustrate local aromaticity of two different kinds of rings in MPc with better resolution. Our results supported earlier reports on very low aromaticity indexes of pyrrole ring incorporated into MPc and significant aromaticity of the central macrocycle. No direct dependence between harmonic oscillator model of aromaticity and NICS was observed. Instead, a correlation between position of scan curve minimum and its magnitude were observed. In addition, the NICS values and 3He chemical shifts in the middle of neutral C60 and C606− anion agreed well with the reported experimental NMR values for He@C60 and He@C606−.  相似文献   

10.
The role of theory level in prediction of benzene magnetic indexes of aromaticity is analysed and compared with calculated nuclear magnetic shieldings of 3He used as NMR probe. Three closely related nucleus‐independent chemical shift (NICS) based indexes were calculated for benzene at SCF‐HF, MP2, and DFT levels of theory and the impact of basis set on these quantities was studied. The changes of benzene NICS(0), NICS(1), and NICS(1)zz parameters calculated using SCF‐HF, MP2 and several density functionals were within 1 to 3 ppm. Similar deviations between magnetic indexes of aromaticity were observed for values calculated with selected basis sets. Only very small effect of polar solvent on benzene aromaticity was predicted. The 3He nuclear magnetic isotropic shielding (σ) and its zz‐components (σzz) of helium atom approaching the centre of benzene ring from above produced similar curves versus benzene‐He distance to NICS parameters calculated for similarly moving Bq ghost atom. We also propose an experimental verification of NICS calculations by designing the 3He NMR measurement for benzene saturated with helium gas or in low temperature matrices.  相似文献   

11.
We report here the synthesis and structural characterization of the first binary iron arsenide cluster anion, [Fe3(As3)3(As4)]3−, present in both [K([2.2.2]crypt)]3[Fe3(As3)3(As4)] ( 1 ) and [K(18-crown-6)]3[Fe3(As3)3(As4)]en ( 2 ). The cluster contains an Fe3 triangle with three short Fe−Fe bond lengths (2.494(1) Å, 2.459(1) Å and 2.668(2) Å for 1 , 2.471(1) Å, 2.473(1) Å and 2.660(1) Å for 2 ), bridged by a 2-butene-like As4 unit. An analysis of the electronic structure using DFT reveals a triplet ground state with direct Fe−Fe bonds stabilizing the Fe3 core.  相似文献   

12.
《Mendeleev Communications》2021,31(6):797-799
The aromaticity in 2,3-pyrido-annulated 1,3,2λ2-diazatetroles C5H3N(NR)2EII (EII = C, Si, Ge, Sn, Pb) was studied using a set of experimental and calculated criteria: UV-VIS, Raman, ISE, NICS, GIMIC and EDDB. The data obtained indicate either a slight decrease in aromaticity (NICS, GIMIC, ISE methods) or equal aromaticity (UV-VIS, ISE methods) compared to benzo-annulated analogues C6H4(NR)2E. The π-aromaticity increases down the group from Si to Pb.  相似文献   

13.
Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2[( NON )Al(NDipp)]2 ( NON =4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al−N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al−N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate leads to C−C coupling and C≡O bond cleavage. Thermodynamically, this is driven, at least in part, by Al−O bond formation. Mechanistically, a combination of quantum chemical and experimental observations suggests that the reaction proceeds via exchange of the NR and O substituents through intermediates featuring an aluminium-bound isocyanate fragment.  相似文献   

14.
The transition metal catalysed formation and cleavage of C−C bonds is of utmost importance in synthetic chemistry. While most of the existing homogeneous catalysts are mononuclear, knowledge of the behaviour of polynuclear species is much more limited. By using computational methods, here we shed light into the mechanistic details of the thermally-induced isomerization of Cp*3Ru3(μ-H)232-pentyne)(μ3-pentylidyne) ( 2 ) into Cp*3Ru3(μ-H)232-octyne)(μ3-ethylidyne) ( 3 ), a process that involves the migration of a C3 fragment between the hydrocarbyl ligands and across the plane formed by the three Ru centres. Our results show this to be a complex transformation that comprises of five individual rearrangements in an ABABA order. Each so-called rearrangement A consists of the CH migration from the μ32-alkyne into the μ3-alkylidine ligand in the other side of the Ru3 plane. This process is facilitated by the cluster's ability to adopt open-core structures in which one Ru−Ru bond is broken and a new C−C bond is formed. In contrast, rearrangements B do not involve the formation or cleavage of C−C bonds, nor do they require the opening of the cluster core. Instead, they consist of the isomerization of the μ32-alkyne and μ3-alkylidyne ligands on each side of the triruthenium plane into μ3-alkylidyne and μ32-alkyne, respectively. Such transformation implies the migration of three H atoms within the hydrocarbyl ligands, and in this case, it is aided by the cluster's ability to behave as a H reservoir. All in all, this study highlights the plasticity of these Ru3 clusters, whereby Ru−Ru, Ru−C, Ru−H, C−C, and C−H bonds are formed and broken with surprising ease.  相似文献   

15.
On the basis of the nucleus‐independent chemical shift (NICS) concept, the anisotropic effects of two inorganic rings, namely, borazine and planar 1,3,2,4‐diazadiboretidine, are quantitatively calculated and visualized as isochemical shielding surfaces (ICSSs). Dissection of magnetic shielding values along the three Cartesian axes into contributions from σ and π bonds by the natural chemical shielding–natural bond orbital (NCS–NBO) method revealed that their appearance is not a simple reflection of the extent of (anti)aromaticity.  相似文献   

16.
Low-valent uranium-element multiple bond complexes remain scarce, though there is burgeoning interest regarding to their bonding and reactivity. Herein, isolation of a uranium(III)-carbon double bond complex [(Cp*)2U(CDP)](BPh4) ( 1 ) comprising a tridentate carbodiphosphorane (CDP) was reported for the first time. Oxidation of 1 afforded the corresponding U(IV) complex [(Cp*)2U(CDP)](BPh4)2 ( 2 ). The distance between U and C in 2 is 2.481 Å, indicating the existence of a typical U=C double bond, which is further confirmed by quantum chemical calculations. Bonding analysis suggested that the CDP also serves as both σ- and π-donor in complex 1 , though a longer U−C bond (2.666(3) Å) is observed. It implies that 1 is the first isolable mononuclear uranium(III) carbene complex. Moreover, these results suggest that CDPs are promising ligands to establish other low-valent f-block metal-carbon multiple bond complexes.  相似文献   

17.
In the recent years, there has been an emerging research interest in the domain of C−C bond-cleavage reactions. The present contribution deals with the redox-mediated dioxygen activation and C−C bond cleavage in a diruthenium complex [(acac)2RuII(μ-L1)RuII(acac)2], 1 (acac=acetylacetonate) incorporating 2,2′-pyridil (L1) as the bridging ligand. The above process leads to a C−C-cleaved monomeric product [(acac)2RuIII(pic)], 2 (pic=piconilate). Intriguingly, similar diastereomeric complexes [(acac)2RuII(μ-L2)RuII(acac)2], meso (ΔΛ): 3 a and rac (ΔΔ/ΛΛ): 3 b , involving an analogous diimine bridge (L2=N1,N2-diphenyl-1,2-di(pyridin-2-yl)ethane-1,2-diimine), were stable towards such oxidative transformations. Electrochemical and spectroelectrochemical studies, in combination, establish the potential non-innocent feature of the 2,2′-Pyridil (L1) and its derivative (L2) both in oxidation and reduction processes. Additionally, theoretical calculations have been employed to verify the redox states and their behavior. Furthermore, transition state (TS) calculations at the M06L/6-31G*/LANL2DZ level of theory together with detailed kinetic studies outline a putative mechanism for the selective transformation of 1 → 2 involving the formation of an intermediate bearing peroxide linkage to complex 1 .  相似文献   

18.
A small macrocycle comprising ether-bridged naphthyl units was prepared in a two-step synthesis. Single-crystal X-ray diffraction of two polymorphs are reported, one of which showed multiple C−H⋅⋅⋅πnaphthyl interactions of a solvent molecule in the cavity of the macrocycle. Chemical reduction led to C−O bond cleavages accompanied by a Z/E isomerization. The resulting twofold negatively charged (E)-1,2-bis(2-naphthyl)ethylene fragment was isolated as its potassium salts. Electronic characterization revealed a singlet ground state, and a marked distortion of the central ethylene unit was observed upon electron uptake.  相似文献   

19.
An explicit DFT modeling of water surroundings on the electron paramagnetic resonance properties of 4‐amino‐2,2,6,6‐tetramethyl‐piperidine‐N‐oxyl (TA) has been performed. A stepwise hydration of TA is accompanied with certain changes in geometrical parameters (bond lengths and angles) and redistribution of partial electric charges in TA. An aqueous cluster of 45 water molecules can be considered as an appropriate model for a complete aqueous shell around TA, although most of the structural and electronic characteristics of TA already converge at about 10 water molecules. Water surroundings induce an increase in electron spin density on the nitrogen atom of the nitroxide fragment due to stabilization of the polar resonance structure > N+?? O? at the expense of less polar structure > N? O?. The water‐induced rise of the isotropic splitting constant aiso, calculated from the contact term of the hyperfine interaction, comprises ΔaisoN2) = 2.2–2.5 G, which is typical of experimental value for TA. There are two contributions to the solvent effect on the aisoN2) value: the redistribution of spin density in the nitroxide fragment (polarity effect) and water‐induced distortions of TA geometry. Microscopic variations in a hydrogen‐bonded water network cause noticeable fluctuations of the splitting constant aisoN2). Calculations of the atomic spin density (σN2) allowed us to compute the splitting constant from the relationship aisoN2) = QσN2, where Q = 36.2 G. A practical advantage of using this relationship is that it gives ‘smoothed’ values of the splitting constant, which are sensitive to the environment polarity but remain tolerant to microscopic fluctuations of the hydrogen‐bonded water network around a spin‐label molecule. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Nucleus‐independent chemical shift (NICS)‐based methods are very popular for the determination of the induced magnetic field under an external magnetic field. These methods are used mostly (but not only) for the determination of the aromaticity and antiaromaticity of molecules and ions, both qualitatively and quantitatively. The ghost atom that serves as the NICS probe senses the induced magnetic field and reports it in the form of an NMR chemical shift. However, the source of the field cannot be determined by NICS. Thus, in a multi‐ring system that may contain more than one induced current circuit (and therefore more than one source of the induced magnetic field) the NICS value may represent the sum of many induced magnetic fields. This may lead to wrong assignments of the aromaticity (and antiaromaticity) of the systems under study. In this paper, we present a NICS‐based method for the determination of local and global ring currents in conjugated multi‐ring systems. The method involves placing the NICS probes along the X axis, and if needed, along the Y axis, at a constant height above the system under study. Following the change in the induced field along these axes allows the identification of global and local induced currents. The best NICS type to use for these scans is NICSπZZ, but it is shown that at a height of 1.7 Å above the molecular plane, NICSZZ provides the same qualitative picture. This method, namely the NICS‐XY‐scan, gives information equivalent to that obtained through current density analysis methods, and in some cases, provides even more details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号