首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9889篇
  免费   1737篇
  国内免费   1263篇
化学   10228篇
晶体学   108篇
力学   110篇
综合类   30篇
数学   14篇
物理学   2399篇
  2024年   14篇
  2023年   158篇
  2022年   259篇
  2021年   507篇
  2020年   682篇
  2019年   541篇
  2018年   475篇
  2017年   557篇
  2016年   762篇
  2015年   739篇
  2014年   833篇
  2013年   980篇
  2012年   888篇
  2011年   892篇
  2010年   685篇
  2009年   674篇
  2008年   604篇
  2007年   582篇
  2006年   447篇
  2005年   384篇
  2004年   260篇
  2003年   247篇
  2002年   171篇
  2001年   170篇
  2000年   111篇
  1999年   79篇
  1998年   46篇
  1997年   40篇
  1996年   26篇
  1995年   21篇
  1994年   16篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   10篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1983年   4篇
  1982年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Nanoporous alumina membrane prepared by anodic oxidation using sulfuric acid electrolyte was subjected to TG-DTA and X-ray Photoelectron Spectroscopy (XPS or ESCA) to further study the distribution of sulfur. In XPS study, Ar+ ion bombardment was performed on the sample to etch the surface at a rate of 3 nm min-1. As a result, sulfur was found to be concentrated within a depth of 3nm from the surface. The S content of the surface was found to be 2.7±0.5 wt%, and that at a depth of ca. 3 nm and ca. 10 nm was found to be as low as about 0.6±0.11 wt% (5.37±1.0 wt%→ 1.26±0.2wt% SO2). In TG-DTA, the mass loss of 7.3% was in fair agreement with that calculated on XPS results (7.1±1.2%). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
42.
The Ni/CeO2-ZrO2-Al2O3 catalyst with different Al2O3 and NiO contents were prepared by hydrothermal synthesis method. The catalytic performance for CO2 reforming of CH4 reaction, the interaction among components and the relation between Ni content and catalyst surface basicity were investigated. Results show that the interaction between NiO and Al2O3 is stronger than that between NiO and CeO2-ZrO2.The addition of Al2O3 can prevent the formation of large metallic Ni ensembles, increase the dispersion of Ni, and improve catalytic activity, but excess Al2O3 causes the catalyst to deactivate easily. The interaction between NiO and CeO2 results in more facile reduction of surface CeO2. The existence of a small amount of metallic Ni can increase the number of basic sites. As metallic Ni may preferentially reside on the strong basic sites, increasing Ni content can weaken the catalyst basicity.  相似文献   
43.
44.
Fine powders of lanthanum iron oxide, LaFeO3, have been prepared by solid state reaction as well as sol-gel synthesis and nebulized spray pyrolysis. Structures, morphologies and magnetic susceptibility measurements of these powders have been examined. The powders prepared by all the three low-temperature routes contain nearly spherical particles with an average diameter of 40 nm. These samples show a lower Neel temperature than the powder prepared by solid state reaction besides showing much lower magnetic susceptibility at low temperatures. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   
45.
Iron–nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron–nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and catalytic properties of iron–nickel samples is established.  相似文献   
46.
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006  相似文献   
47.
Block copolymer micelles and shell cross-linked nanoparticles (SCKs) presenting Click-reactive functional groups on their surfaces were prepared using two separate synthetic strategies, each employing functionalized initiators for the controlled radical polymerization of acrylate and styrenic monomers to afford amphiphilic block copolymers bearing an alkynyl or azido group at the α-terminus. The first route for the synthesis of the azide-functionalized nanostructures was achieved via sequential nitroxide-mediated radical polymerization (NMP) of tert-butyl acrylate and styrene, originating from a benzylic chloride-functionalized initiator, followed by deprotection of the acrylic acids, supramolecular assembly of the block copolymer in water and conversion of the benzylic chloride to a benzylic azide. In contrast, the second strategy utilized an alkynyl-functionalized reversible addition fragmentation transfer (RAFT) agent directly for the RAFT-based sequential polymerization of tetrahydropyran acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give the α-alkynyl-functionalized block copolymers. These Click-functionalized polymers, with the functionality located at the hydrophilic polymer termini, were then self-assembled using a mixed-micelle methodology to afford surface-functionalized “Clickable” micelles in aqueous solutions. The optimum degree of incorporation of the Click-functionalized polymers was investigated and determined to be ca. 25%, which allowed for the synthesis of well-defined surface-functionalized nanoparticles after cross-linking selectively throughout the shell layer using established amidation chemistry. Functionalization of the chain ends was shown to be an efficient process under standard Click conditions and the resulting functional groups revealed a more “solution-like” environment when compared to the functional group randomly inserted into the hydrophilic shell layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5203–5217, 2006  相似文献   
48.
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006  相似文献   
49.
Polyelectrolyte complexes (PECs) have been prepared from well‐defined (quaternized) poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and high molecular weight poly(2‐acrylamido‐2‐methylpropane sodium sulfonate) (PAMPSNa) after a thorough study of their viscometric properties. The effect of pH and quaternization degree of PDMAEMA on PECs stoichiometry has been examined. PEC‐based materials have been characterized in terms of thermal stability, equilibrium swelling degree, and free/bound water composition. The stoichiometry and swellability of the physically crosslinked hydrogels obtained from fully quaternized PDMAEMA/PAMPSNa complexes do not depend on pH. In contrast, PECs made of non quaternized PDMAEMA and PAMPSNa are highly affected by pH, and could reversibly disintegrate at pH ≥ 9. Partially quaternized PDMAEMA/PAMPSNa PECs exhibit intermediate properties and form stable loose structures in the whole investigated pH range. Finally, stable dispersions of PECs nanoparticles have been successfully produced from dilute solutions of the complementary polyelectrolytes. The nanoparticle average diameter as determined by dynamic light scattering proved to depend on the molar fraction of DMAEMA‐based subunits and on the initial polyelectrolyte concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5468–5479, 2006  相似文献   
50.
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号