首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   145篇
  国内免费   222篇
化学   1392篇
晶体学   3篇
力学   15篇
综合类   52篇
数学   82篇
物理学   243篇
  2024年   1篇
  2023年   31篇
  2022年   56篇
  2021年   115篇
  2020年   111篇
  2019年   61篇
  2018年   56篇
  2017年   41篇
  2016年   67篇
  2015年   50篇
  2014年   60篇
  2013年   95篇
  2012年   81篇
  2011年   107篇
  2010年   65篇
  2009年   69篇
  2008年   71篇
  2007年   74篇
  2006年   79篇
  2005年   79篇
  2004年   37篇
  2003年   40篇
  2002年   41篇
  2001年   20篇
  2000年   32篇
  1999年   24篇
  1998年   26篇
  1997年   24篇
  1996年   35篇
  1995年   31篇
  1994年   19篇
  1993年   22篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   12篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有1787条查询结果,搜索用时 62 毫秒
91.
活性氧簇(ROS), 如过氧化氢, 在生物体内的各种生理和病理过程中发挥着重要作用. 生物体内活性氧簇水平的异常与多种疾病(炎症、 肿瘤和器官损伤等)密切相关, 使ROS监测成为研究和诊断这些疾病的重要工具. 目前, 实现活体内深组织中的活性氧簇成像仍然面临挑战. 本文设计并合成了一种响应型的19F磁共振成像(MRI)探针(Gd-DPBF), 并将其用于实现对活体内通用活性氧簇的检测和成像. 该探针由钆螯合物通过活性氧簇响应的芳香硼酸酯键与含氟砌块相连接构成. 体外和体内成像实验结果证实, 该探针可以实现在活体荷瘤小鼠中针对肿瘤中高表达的活性氧进行检测和成像, 展示了其在生物体内对活性氧簇相关生理过程进行深组织、 零生物背景成像方面的潜力.  相似文献   
92.
93.
94.
95.
Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.  相似文献   
96.
Single-drop microextraction (SDME) has been recognized as one of the simple miniaturized sample preparation tools for the isolation and preconcentration of several analytes from a complex sample matrix. In this review, we explored the applications of SDME coupled with various analytical techniques (spectroscopy, chromatography, and mass spectrometry) for the analysis of organic molecules, inorganic ions, and biomolecules from various sample matrices including food, environmental, clinical, pharmaceutical, and industrial samples. Also, it summarizes the use of nanoparticles in SDME combined with various analytical tools for the rapid analysis of several trace-level target analytes. An overview of ionic liquids, deep eutectic solvents, and SUPRAS, which improved the selectivity and sensitivity of various analytical techniques toward several analytes, as promising extracting solvent systems in SDME is also included. Finally, discussed the impressive analytical features and future perspectives of SDME in this review article.  相似文献   
97.
Use of robust and safe water disinfection technologies which are inexpensive and energy-efficient are need of the hour to combat the problem of inadequate access of safe and clean drinking water. Energy and chemically intensive water treatment technologies warrant the need for a safe and environmentally sound treatment technology. Electrochemical disinfection or electrodisinfection (ED) is experiencing a great resurgence among the scientific communities owing to its novel use of electrode materials and electric current in an inexpensive and energy-efficient way for achieving the inactivation of microorganisms. Among the various electrodes used in the ED, boron-doped diamonds emerge as a sustainable alternate for their ability to electro generate strong potent oxidants which result in effective pathogen control in drinking water. ED for disinfecting waters occurs via generation of the reactive species which act in the bacterial inactivation mechanisms. In this mini-review, a critical discussion on the fundamentals and applications of promising electrochemical methods using boron-doped diamond anodes (namely electrochemical oxidation), evidencing their advantages for the remediation of drinking water infected with waterborne agents, is given.  相似文献   
98.
Matrix metalloproteinases (MMPs), key molecules of cancer invasion and metastasis, degrade the extracellular matrix and cell–cell adhesion molecules. MMP-10 plays a crucial role in Helicobacter pylori-induced cell-invasion. The mitogen-activated protein kinase (MAPK) signaling pathway, which activates activator protein-1 (AP-1), is known to mediate MMP expression. Infection with H. pylori, a Gram-negative bacterium, is associated with gastric cancer development. A toxic factor induced by H. pylori infection is reactive oxygen species (ROS), which activate MAPK signaling in gastric epithelial cells. Peroxisome proliferator-activated receptor γ (PPAR-γ) mediates the expression of antioxidant enzymes including catalase. β-Carotene, a red-orange pigment, exerts antioxidant and anti-inflammatory properties. We aimed to investigate whether β-carotene inhibits H. pylori-induced MMP expression and cell invasion in gastric epithelial AGS (gastric adenocarcinoma) cells. We found that H. pylori induced MMP-10 expression and increased cell invasion via the activation of MAPKs and AP-1 in gastric epithelial cells. Specific inhibitors of MAPKs suppressed H. pylori-induced MMP-10 expression, suggesting that H. pylori induces MMP-10 expression through MAPKs. β-Carotene inhibited the H. pylori-induced activation of MAPKs and AP-1, expression of MMP-10, and cell invasion. Additionally, it promoted the expression of PPAR-γ and catalase, which reduced ROS levels in H. pylori-infected cells. In conclusion, β-carotene exerts an inhibitory effect on MAPK-mediated MMP-10 expression and cell invasion by increasing PPAR-γ-mediated catalase expression and reducing ROS levels in H. pylori-infected gastric epithelial cells.  相似文献   
99.
Besides human red blood cells (RBC), a standard model used in AFM-single cell force spectroscopy (SCFS), little is known about apparent Young’s modulus (Ea) or adhesion of animal RBCs displaying distinct cellular features. To close this knowledge gap, we probed chicken, horse, camel, and human fetal RBCs and compared data with human adults serving as a repository for future studies. Additionally, we assessed how measurements are affected under physiological conditions (species-specific temperature in autologous plasma vs. 25 °C in aqueous NaCl solution). In all RBC types, Ea decreased with increasing temperature irrespective of the suspension medium. In mammalian RBCs, adhesion increased with elevated temperatures and scaled with reported membrane sialic acid concentrations. In chicken only adhesion decreased with higher temperature, which we attribute to the lower AE-1 concentration allowing more membrane undulations. Ea decreased further in plasma at every test temperature, and adhesion was completely abolished, pointing to functional cell enlargement by adsorption of plasma components. This halo elevated RBC size by several hundreds of nanometers, blunted the thermal input, and will affect the coupling of RBCs with the flowing plasma. The study evidences the presence of a RBC surface layer and discusses the tremendous effects when RBCs are probed at physiological conditions.  相似文献   
100.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号