首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   4篇
  国内免费   39篇
化学   262篇
晶体学   1篇
力学   1篇
综合类   1篇
物理学   9篇
  2023年   1篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   31篇
  2012年   14篇
  2011年   11篇
  2010年   11篇
  2009年   9篇
  2008年   14篇
  2007年   2篇
  2006年   17篇
  2005年   18篇
  2004年   13篇
  2003年   10篇
  2002年   13篇
  2001年   6篇
  2000年   11篇
  1999年   13篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有274条查询结果,搜索用时 227 毫秒
31.
Zerovalent ytterbium (Yb) powder is firstly used as a catalyst in single electron transfer‐living radical polymerization of methyl methacrylate initiated by carbon tetrachloride in N, N‐dimethylformamide (DMF) and dimethyl sulfoxide, respectively. Polymerization proceeds in a “living”/controlled way as evidenced by kinetic studies and chain extension results, producing well‐defined polymers with controlled degree of polymerization and narrow molecular weight distribution. The apparent activation energy of polymerization in DMF is accounted to be 36.2 kJ/mol, and the energy of equilibrium state is calculated to be 13.9 kJ/mol. An increase in the concentration of Yb(0) yields a higher monomer conversion. It is observed that polymerization rate experiments a rapid increase in the presence of more polar solvent water, and increasing in the content of H2O results in an increase in the apparent rate constant of polymerization, and a decrease in the molecular weight distribution. The reaction rate and molecular weight increase along with the decrease of DMF content. The effect of Yb(0) powder content, different ligands and concentration of initiator on the polymerization is also investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
32.
The copper(0)‐catalyzed living radical polymerization of acrylonitrile (AN) was investigated using ethyl 2‐bromoisobutyrate as an initiator and 2,2′‐bipyridine as a ligand. The polymerization proceeded smoothly in dimethyl sulphoxide with higher than 90% conversion in 13 h at 25 °C. The polymerization kept the features of controlled radical polymerization. 1H NMR spectra proved that the resultant polymer was end‐capped by ethyl 2‐bromoisobutyrate species. Such polymerization technique was also successfully introduced to conduct the copolymerization of styrene (St) and AN to obtain well‐controlled copolymers of St and AN at 25 °C, in which the monomer conversion of St could reach to higher than 90%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
33.
In this study, first the acrylonitrile‐butadiene rubber (NBR5080) was modified by argon (Ar), air, and oxygen plasma at low temperature, and the effect of plasma process (power, time, and pressure) on the surface properties of NBR5080, the interfacial properties, physical properties, and the mechanical properties of NBR5080/polytetrafluoroethylene (PTFE) composites were investigated. The state contact angle and the surface free energy were applied to characterize the surface wettability of NBR5080. The scanning electron microscope and the atomic force microscope were used to observe the surface morphology of the NBR5080. The chemical changes on the NBR5080 surface were verified by X‐ray photoelectron spectroscopy. The average water contact angle the NBR5080 declined obviously when NBR5080 was treated by Ar (100 W/600 s/30 Pa). The active oxygen groups were introduced onto the surface of NBR5080 by cold plasma treatment and more active group containing oxygen were observed on the samples treated by Ar plasma. The peel strength between the NBR5080 and the PTFE was increased obviously, which increased from 0 to 44.2 N?m?1 for Ar plasma treatment. The mass and the dimension of NBR5080 increase sharply after immersing in kerosene, whereas the NBR5080/PTFE composites changed a little. The mechanical properties of NBR5080 and NBR5080/PTFE composites decreased as the immersion time in kerosene increased, but the decreased degree of NBR5080 is higher than NBR5080/PTFE composites.  相似文献   
34.
In this article, the miscibility of poly(ε‐caprolactone) (PCL) with poly(styrene‐coacrylonitrile) (SAN) containing 25 wt % of acrylonitrile is studied from both a qualitative and a quantitative point of view. The evidences coming from thermal analysis (differential scanning calorimetry) demonstrate that PCL and SAN are miscible in the whole range of composition. The Flory interaction parameter χ1,2 was calculated by the Patterson approximation and the melting point depression of the crystalline phase in the blends; in both cases, negative values of χ1,2 were found, confirming that the system is miscible. The interaction parameter evaluated within the framework of the mean field theory demonstrates that the miscibility of PCL/SAN blends is due to the repulsive interaction between the styrene and acrylonitrile segments in SAN. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
35.
Plasma polymerizations of three cyano compounds—acrylonitrile (AN), 1,2-dicyanoethylene (FN), and tetracyanoethylene (TCE)—were investigated by FT IR and XPS, and the transforamtion of cyano groups during the plasma polymerization was discussed. The results pointed out an aspect of the preparation of plasma films with cyano groups. Plasma polymerizations of AN, FN, and TCE deposited brown or dark brown films that contained carbon, nitrogen, and oxygen. The elemental composition of the plasma films, especially N/C atomic ratio, showed a monomer dependence but no rf power dependence. The plasma films contained amide and amino groups, and ketene-imine and conjugated — C = N — structures as well as cyano groups as nitrogen functionalities, and carbonyl and carboxyl groups as oxygen functionalities. For the preparation of plasma films with cyano groups, compounds with more than two cyano groups themselves are not suitable as monomers. The operation of plasma polymerization under mild plasma conditions at low rf power and in no oxygen atmosphere is favorable for the preparation of plasma films with cyano groups. © 1992 John Wiley & Sons, Inc.  相似文献   
36.
Polyacrylonitrile (PAN) was grafted from surfaces of chloro‐modified silica‐gel with their surface chlorines as initiation sites, using an iron (III)‐mediated surface‐initiated atom transfer radical polymerization (ATRP) with activators regenerated by electron transfer (SI‐ARGET ATRP) method. The graft reaction exhibits first‐order kinetics with respect to the polymerization time in the low‐monomer‐conversion stage. The conversion of monomer (C%) and the percentage of grafting (PG%) increased with increasing of the polymerizing time and reached 23 and 730% after a polymerizing time of 24 hr, respectively. Hydroxylamine (NH2OH·HCl) was used to modify the cyano groups of SG‐g‐PAN to obtain amidoxime (AO) groups. The AO SG‐g‐PAN was used to remove Hg2+. The adsorption kinetics indicated that the pseudo‐second‐order model was more suitable to describe the adsorption kinetics of AO SG‐g‐PAN for Hg2+. The adsorption isotherms demonstrated that Langmuir model was much better than Freundlich model to describe the isothermal process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
37.
低负载钯(w(Pd)=0.05%)催化剂对含其它不饱和基团的双键加氢有很好的选择性和活性,应用于丙烯腈气相加氢可得到高收率的丙腈.采用积分固定床反应器,研究了丙烯腈气相加氢的最佳工艺条件∶温度140℃、n(氢气)∶n(腈)=9∶1.但催化剂失活严重,红外测试表明∶催化剂失活主要源于产物及原料在催化剂上的吸附,可通过焙烧除去吸附物,从而使活性恢复.  相似文献   
38.
POE-graft-methyl methacrylate and acrylonitrile (POE-g-MAN) was prepared by graft copolymerization of methyl methacrylate (MMA) and acrylonitrile (AN) onto polyethylene-octene copolymers (POE) with suspension polymerization. POE-g-MAN/SAN resin blends (AOMS) were prepared by blending POE-g-MAN with styrene-acrylonitrile copolymer (SAN resin). The mechanical properties, compatibility, and thermal stabilities of AOMS were studied. The notched impact strength of the blends reached 54.0 kJ/m2 when the AN/(MMA + AN) ratio (fAN) of POE-g-MAN, benzoyl peroxide dosage, and POE content in AOMS were 15 wt%, 1.0 wt%, and 25 wt%, respectively. Transmission electron microscopy analysis showed that the highest toughness occurred when the size of POE-g-MAN particles and the surface-to-surface inter-particle distance were proper. Scanning electron microscopy analysis indicated that the AOMS fracture surface had plastic flow visible, which looked like a fibril morphology when the AN/(MMA + AN) ratio (fAN) of POE-g-MAN was 15 wt%. The toughening mechanism of AOMS was shear yielding of the matrix, which endowed AOMS with remarkable toughness. Dynamic mechanical thermal analysis showed that the compatibility of the POE phase and SAN phase improved after graft copolymerization of MMA and AN onto POE. When the grafting chain polarity was appropriate, the miscibility between POE-g-MAN and SAN resin was the best. Thermogravimetry analysis showed that thermal stability of AOMS increased with increasing AN units in POE-g-MAN.  相似文献   
39.
In the present work, four-layer polymeric waveguides have been fabricated and characterized by interchanging the film layer. Using polyvinyl alcohol (PVA) and styrene acrylonitrile (SAN) polymer it has been shown that polymers do not loose their own property in multilayer structure and better efficiency can be achieved in the form of low propagation losses and mode filtration. Due to high contrast of PVA and SAN films, a broad spectrum of refractive index in four-layer structure has been achieved.  相似文献   
40.
《先进技术聚合物》2018,29(8):2336-2343
Morphology structure and interfacial interaction are crucial factors for shape memory thermoplastic vulcanizates. In this study, shape memory thermoplastic vulcanizates based on poly(lactic acid) (PLA) and nitrile butadiene rubber (NBR) were prepared through dynamic vulcanization. The influence of acrylonitrile (ACN) content on the morphology, compatibility, shape memory property, and mechanical property was investigated. A co‐continuous structure was observed. The interfacial compatibilization between PLA and NBR phases occurred, resulting in a significantly improved interface adhesion and interfacial interaction, which was confirmed by Fourier transform infrared spectroscopy. With such a novel structure, the PLA/NBR TPVs owned an excellent shape memory property and further improved with increasing ACN content of NBR, which could be explained that the cross‐linked continuous NBR phase provided a stronger recovery driving force. In the meantime, tensile strength and elongation at break of TPVs increased with increase in ACN content. It is concluded that the preparation of dynamically vulcanized thermoplastic vulcanizate with co‐continuous structure and strong interfacial adhesion is beneficial to obtain outstanding shape memory effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号