首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32196篇
  免费   2384篇
  国内免费   7844篇
化学   34317篇
晶体学   676篇
力学   528篇
综合类   347篇
数学   2420篇
物理学   4136篇
  2024年   50篇
  2023年   322篇
  2022年   576篇
  2021年   983篇
  2020年   1013篇
  2019年   1013篇
  2018年   909篇
  2017年   1207篇
  2016年   1474篇
  2015年   1249篇
  2014年   1539篇
  2013年   3142篇
  2012年   2570篇
  2011年   2160篇
  2010年   1868篇
  2009年   2087篇
  2008年   2148篇
  2007年   2284篇
  2006年   2091篇
  2005年   1913篇
  2004年   1717篇
  2003年   1390篇
  2002年   1256篇
  2001年   959篇
  2000年   899篇
  1999年   764篇
  1998年   621篇
  1997年   616篇
  1996年   559篇
  1995年   517篇
  1994年   453篇
  1993年   369篇
  1992年   344篇
  1991年   246篇
  1990年   209篇
  1989年   200篇
  1988年   150篇
  1987年   100篇
  1986年   69篇
  1985年   63篇
  1984年   64篇
  1983年   41篇
  1982年   55篇
  1981年   36篇
  1980年   31篇
  1979年   26篇
  1978年   26篇
  1977年   7篇
  1976年   8篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The contribution of rheological properties and viscoelasticity of the interfacial adsorbed layer to the emulsification mechanism of enzymatic modified sugar beet pectin (SBP) was studied. The component content of each enzymatic modified pectin was lower than that of untreated SBP. Protein and ferulic acid decreased from 5.52% and 1.08% to 0.54% and 0.13%, respectively, resulting in a decrease in thermal stability, apparent viscosity, and molecular weight (Mw). The dynamic interfacial rheological properties showed that the interfacial pressure and modulus (E) decreased significantly with the decrease of functional groups (especially proteins), which also led to the bimodal distribution of particle size. These results indicated that the superior emulsification property of SBP is mainly determined by proteins, followed by ferulic acid, and the existence of other functional groups also promotes the emulsification property of SBP.  相似文献   
12.
The design and exploration of efficient, stable and environmentally compatible organic emitters for an electrochemiluminescence (ECL) sensor is a promising topic. Herein, a novel environmentally-friendly luminophore, ZnBCBTP@MWCNTs, were fabricated via self-assembly of porphyrin molecules (ZnBCBTP) onto multi-walled carbon nanotubes (MWCNTs). The resulting luminophore ZnBCBTP@MWCNTs displayed not only the highly ECL property and but also the good accelerated electron mobility. Then, a label-free ECL biosensor based ZnBCBTP@MWCNTs was constructed for the ultrasensitive detection of uric acid. Excitingly, this proposed ECL biosensor performed a good linear relationship in the range of 0–300 μM with a low detection limit of 1.4 μM, thus offering another reliable and feasible sensing platform for clinical bioanalysis with good selectivity, stability, and repeatability.  相似文献   
13.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
14.
Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.  相似文献   
15.
When dealing with simple phenols such as caffeic acid (CA) and ferulic acid (FA), found in a variety of plants, it is very important to have control over the most important factors that accelerate their degradation reactions. This is the first report in which the stabilities of these two compounds have been systematically tested by exposure to various different factors. Forced degradation studies were performed on pure standards (trans-CA and trans-FA), dissolved in different solvents and exposed to different oxidative, photolytic and thermal stress conditions. Additionally, a rapid, sensitive, and selective stability-indicating gas chromatographic-mass spectrometric method was developed and validated for determination of trans-CA and trans-FA in the presence of their degradation products. Cis-CA and cis-FA were confirmed as the only degradation products in all the experiments performed. All the compounds were perfectly separated by gas chromatography (GC) and identified using mass spectrometry (MS), a method that additionally elucidated their structures. In general, more protic solvents, higher temperatures, UV radiation and longer storage times led to more significant degradation (isomerization) of both trans-isomers. The most progressive isomerization of both compounds (up to 43%) was observed when the polar solutions were exposed to daylight at room temperature for 1 month. The method was validated for linearity, precision as repeatability, limit of detection (LOD) and limit of quantitation (LOQ). The method was confirmed as linear over tested concentration ranges from 1−100 mg L−1 (r2s were above 0.999). The LOD and LOQ for trans-FA were 0.15 mg L−1 and 0.50 mg L−1, respectively. The LOD and LOQ for trans-CA were 0.23 mg L−1 and 0.77 mg L−1, respectively.  相似文献   
16.
A simple and rapid analytical method for the detection of trifloxystrobin, trifloxystrobin acid and tebuconazole in soil, brown rice, paddy plants and rice hulls was established and validated by liquid chromatography with tandem mass spectrometry. Acceptable linearity (R2 > 0.99), accuracy (average recoveries of 74.3–108.5%) and precision (intra- and inter-day relative standard deviations of 0.9–8.8%) were obtained using the developed determination approach. In the field trial, the half-lives of trifloxystrobin and tebuconazole in paddy plants were 5.7–8.3 days in three locations throughout China, and the terminal residue concentrations of trifloxystrobin and tebuconazole were <100 and 500 μg/kg (maximum residue limits set by China), respectively, at harvest, which indicated that, based on the recommended application procedure, trifloxystrobin and tebuconazole are safe for use on rice. The risk assessment results demonstrated that, owing to risk quotient values of both fungicides being <100%, the potential risk of trifloxystrobin and tebuconazole on rice was acceptable for Chinese consumers. These data could provide supporting information for the proper use and safety evaluation of trifloxystrobin and tebuconazole in rice.  相似文献   
17.
A graph is concave-round if its vertices can be circularly enumerated so that the closed neighborhood of each vertex is an interval in the enumeration. In this study, we give a minimal forbidden induced subgraph characterization for the class of concave-round graphs, solving a problem posed by Bang-Jensen, Huang, and Yeo [SIAM J. Discrete Math., 13 (2000), pp. 179–193]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave-round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular-ones property for rows and for the circular-ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular-arc graphs.  相似文献   
18.
Surimi from silver carp with different salt contents (0–5%) was obtained treated by high intensity ultrasound (HIU, 100 kHz 91 W·cm−2). The gelation properties of samples were evaluated by puncture properties, microstructures, water-holding capacity, dynamic rheological properties and intermolecular interactions. As the salt content increased from 0 to 5%, gel properties of surimi without HIU significantly improved. For samples with low-salt (0–2% NaCl) content, HIU induced obvious enhancement in breaking force and deformation. HIU promoted the protein aggregation linked by SS bonds, hydrophobic interactions and non-disulfide covalent bonds in surimi gels with low-salt content. Moreover, microstructures of HIU surimi gels with low-salt content were more compact than those of the corresponding control samples. HIU also improved the gelation properties of surimi with 3% NaCl to an extent. However, for high-salt (4–5% NaCl) samples, HIU decreased the breaking force and deformation of surimi gels due to the degradation of proteins suggested by increased TCA-soluble peptides. In conclusion, HIU effectively improved the gelation properties of surimi with low-salt content (0–2% NaCl), but was harmful for high-salt (4–5% NaCl) surimi. This might provide the theoretical basis for the production of low-salt surimi gels.  相似文献   
19.
Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.  相似文献   
20.
Leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are important bioactive lipid mediators that participate in various pathophysiological processes. To advance understanding of the mechanisms that regulate these mediators in physiological and pathological processes, an analytical method using liquid chromatography/tandem mass spectrometry for the simultaneous quantification of LTB4, LTC4, LTD4, LTE4, 5‐HETE, 8‐HETE, 12‐HETE and 15‐HETE in cell culture media was developed. A Supel?‐Select HLB solid‐phase extraction cartridge was used for sample preparation. The compounds were separated on a C18 column using gradient elution with acetonitrile–water–formic acid (20:80:0.1, v/v/v) and acetonitrile–formic acid (100:0.1, v/v). The calibration curves of LTB4, LTD4, LTE4 and HETEs were linear in the range of 0.025–10 ng/mL, and the calibration curve of LTC4 was linear in the range of 0.25–10 ng/mL. Validation assessment showed that the method was highly reliable with good accuracy and precision. The stability of LTs and HETEs was also investigated. Using the developed method, we measured LTs and HETEs in the culture supernatant of the human mast cell line HMC‐1. The present method could facilitate investigations of the mechanisms that regulate the production, release and signaling of LTs and HETEs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号