首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   27篇
  国内免费   79篇
化学   870篇
晶体学   1篇
力学   11篇
综合类   3篇
数学   2篇
物理学   41篇
  2024年   1篇
  2023年   5篇
  2022年   9篇
  2021年   16篇
  2020年   37篇
  2019年   12篇
  2018年   14篇
  2017年   20篇
  2016年   31篇
  2015年   24篇
  2014年   21篇
  2013年   53篇
  2012年   20篇
  2011年   35篇
  2010年   32篇
  2009年   49篇
  2008年   51篇
  2007年   43篇
  2006年   55篇
  2005年   43篇
  2004年   58篇
  2003年   54篇
  2002年   31篇
  2001年   25篇
  2000年   24篇
  1999年   28篇
  1998年   17篇
  1997年   20篇
  1996年   14篇
  1995年   16篇
  1994年   16篇
  1993年   13篇
  1992年   12篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有928条查询结果,搜索用时 16 毫秒
61.
Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.  相似文献   
62.
This study dedicates to foaming of biocompatible blends of polylactic acid and thermoplastic polyurethane reinforced with bio-degradable cellulose nanofibers. This research primarily was associated with fabrication of PLA-TPU nanocomposites using a low weight fraction of cellulose nanofibers as a biodegradable reinforcement. Microstructural and mechanical properties of fabricated nanocomposites were examined and diffractometry was utilized to verify formation of percolated nanocomposites. Microcellular foaming was then performed with CO2 as a blowing agent. Central composite design was applied in designing the experiments to evaluate the effects of main operating variables consisting of saturation pressure and time, heating time and foaming temperature. The results demonstrated that high saturation pressure and time promoted low cell diameters (below 5 μm) and high cell densities (above 109 cell/cm3) due to the grown degree of crystallinity and higher PLA-TPU miscibility. Accordingly, adding TPU and CNF to the matrix create high crystalline foamed samples decorated with low bulk density.  相似文献   
63.
64.
A series of new poly(ether-ester-imide)s, PEEIs, was prepared from an imide dicarboxylic acid based on 1,4-diaminobutane and trimellitic anhydride. This imide dicarboxylic acid polycondensed with 1,4-dihydroxybutane formed the hard segments and poly(ethylene oxide), PEO-1000, or mixtures of PEO-1000 and poly(tetramethylene oxide), PTMO-1000, were used as soft segments. Whenever PTMO-1000 was used as comonomer, macrophase separation was observed at the end of the polycondensation. However, this macrophase separation had little influence on the mechanical properties. A poly(ether-esterimide), PEEI, containing neat PEO-1000 was characterized by dynamic mechanical thermoanalysis, stress-strain and hysteresis measurements, and by melt rheology. The mechanical properties were compared with those of an analogous PEEI containing neat PTMO-1000 and with those of a poly(ether-ester), PEE, based on poly(butylene terephthalate) hard segments and PTMO-1000.  相似文献   
65.
The formation of stable water-in-crude oil emulsions during petroleum production and refinery may create sever and costly separation problems. It is very important to understand the mechanism and factors contributing to the formation and stabilization of such emulsions for both great economic and environmental development. This article investigates some of the factors controlling the stability of water-in-crude oil emulsions formed in Burgan oil field in Kuwait. Water-in-crude oil emulsion samples collected from Burgan oil filed have been used to separate asphaltenes, resins, waxes, and crude oil fractions. These fractions were used to prepare emulsion samples to study the effect of solid particles (Fe3O4) on the stability of emulsions samples. Results indicate that high solid content lead to higher degree of emulsion stability. Stability of emulsion samples under various waxes to asphaltenes (W/A) ratios have also been tested. These tests showed that at low W/A content, the emulsions were very stable. While at a wax to asphaltene ratio above 1 to 1, the addition of wax reduced emulsion stability. Stability of emulsion samples with varying amount of water cut has also been investigated. Results indicated that stability and hence viscosity of emulsion increases as a function of increasing the water cut until it reaches the inversion point where a sharp decline in viscosity takes place. This inversion point was found to be approximately at 50% water cut for the crude oils considered in this study.  相似文献   
66.
Asphaltenes and resins separated from emulsion samples collected from Burgan oil field were used with heptane‐toluene mixtures as model oil to study the effect of oil aromaticity, resin content, and pH of the aqueous phase on the stability of water in model emulsions. It was confirmed that, as long as the asphaltenes are completely solubilized, increasing aromaticity leads to less stable emulsions. A consistent correlation between emulsion stability and relative resin mass content (R/(R+A)) was observed for all three of the field samples. There was a sharp decrease in stability when the R/(R+A) value exceeded 0.75. Emulsion stability was enhanced at high pH and possibly at very low pH (<2).  相似文献   
67.
Cellulose was modified via chlorination using phosphorous oxychloride followed by functionalization with amine and thiol moieties. The obtained modified cellulose samples were investigated by means of FTIR, TGA, TEM, and nitrogen-adsorption surface area (BET). The BET measurements showed a remarkable increase in the surface area of Cell-N-S (477.7 m2/g) and Cell-N (706 m2/g). The resins gave an uptake capacities of 38 and 7.2mmol/g for Cell-N-S and Cell-N, respectively toward Hg(II) from its solutions. These values are considered much better compared with other reported resins. Regeneration of the resins was achieved effectively using acidified thiourea.  相似文献   
68.
以同向啮合双螺杆挤出机为反应器,采用苯乙烯和异戊二烯为聚合单体,以正丁基锂为引发剂,采用三次加料法合成苯乙烯/异戊二烯/苯乙烯(SIS)三嵌段热塑性弹性体.氢核磁共振(1H NMR)谱分析结果表明,共聚物中聚异戊二烯嵌段以1,4-结构为主.采用四氧化锇催化双氧水氧化降解聚合物分子链,利用凝胶渗透色谱对氧化降解后的聚苯乙烯碎片进行分析,证明共聚物分子为(聚苯乙烯-聚异戊二烯-聚苯乙烯)(PS-PI-PS)三嵌段结构.动态力学分析(DMA)及透射电子显微镜(TEM)分析结果表明,SIS具有两相分离结构.拉伸试验结果表明,共聚物拉伸强度与苯乙烯含量有关.  相似文献   
69.
Among additive manufacturing, photocuring 3D printing technologies are very relevant because of its high printing speed and high precision. However, the limited performance of photosensitive thermoset polymers is the bottleneck for the application of photocuring 3D printing in some fields, particularly in the biomedical sector. Thus, the development of biodegradable and biocompatible materials is highly desirable and of utmost importance. In this work, a biodegradable and non-cytotoxic thermoset polymer for photocuring 3D printing is reported. It consists of an unsaturated polyesteramide bearing phenylalanine, 2-butene-1,4-diol and fumarate building blocks, which is photocured under UV irradiation using a low molecular weight poly(ethylene glycol) diacrylate as crosslinker. The main characteristics of the new thermoset are: (1) very high volumetric and mechanical integrity stabilities, comparable to that of photocured epoxides; (2) very high degradation temperature; (3) very low water absorption capacity; (4) relatively fast enzymatic degradation, reaching 16.5% after 3 months; and (5) non-cytotoxic response in presence of epithelial cells, even when soluble molecular fragments coming from biodegradation are considered. These properties favor the future utilization of the new polyether-polyesteramide resin in the manufacturing of more sustainable products via 3D printing methods, such as stereolithography, that uses UV sources.  相似文献   
70.
Olive mill wastewater (OMW) contains valuable and interesting bioactive compounds, among which is hydroxytyrosol, which is characterized by a remarkable antioxidant activity. Due to the health claims related to olive polyphenols, the aim of this study was to obtain an extract from OMW with an increased level of hydroxytyrosol by means of microbial enzymatic activity. For this purpose, four commercial adsorbent resins were selected and tested. The beta-glucosidase and esterase activity of strains of Wickerhamomyces anomalus, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae were also investigated and compared to those of a commercial enzyme and an Aspergillus niger strain. The W. anomalus strain showed the best enzymatic performances. The SP207 resin showed the best efficiency in selective recovery of hydroxytyrosol, tyrosol, oleuropein, and total phenols. The bioconversion test of the OMW extract was assessed by using both culture broths and pellets of the tested strains. The results demonstrated that the pellets of W. anomalus and L. plantarum were the most effective in hydroxytyrosol increasing in phenolic extract. The interesting results suggest the possibility to study new formulations of OMW phenolic extracts with multifunctional microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号