首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   7篇
  国内免费   14篇
化学   103篇
晶体学   6篇
力学   1篇
综合类   2篇
数学   9篇
物理学   17篇
  2023年   6篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   9篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
71.
The nanoflower lead(II) coordination compound {[Pb(phen)(μ‐CH3COO)][PF6]}n ( 1 ) (phen = 1,10‐phenanthroline) was synthesized by a sonochemical method. The nanostructure was characterized by using scanning electron microscopy (SEM), X‐ray powder diffraction, elemental analysis, and thermal analysis. The single‐crystal X‐ray structure shows that the overall structure of 1 is a 1D coordination polymer. Complex 1 has a bridging acetate pathway. Three halogen bonds observed in the structure and the strong halogen bonding of F–Pb causes chemical activity of the lead electron pair. This is further extended into a 3D supramolecular structure by weak π–π intermolecular interactions. The coordination number of the lead(II) ions is six, resulting in PbN2O4. PbO nanoparticles were obtained by the thermolysis of 1 at 180 °C with oleic acid as a surfactant. The morphology and size of the prepared PbO nanoparticles were further observed using scanning electron (SEM) and transmission electron microscopy (TEM), and were analyzed by X‐ray photoelectron spectroscopy (XPS).  相似文献   
72.
Chrysanthemum flower is a common traditional Chinese medicine (TCM). In this work, pressurized hot water extraction (PHWE) followed by headspace solid-phase microextraction (HS-SPME) and GC-MS was developed for the determination of three main active volatile compounds of eucalyptol, camphor, and borneol in Chrysanthemum flowers from four different growing areas in China by internal standard method. The parameters of PHWE and HS-SPME were optimized. The method was also validated. The results showed that PHWE-SPME-GC-MS is a simple, rapid, efficient, and solvent-free technique for the quantitative determination of eucalyptol, camphor, and borneol in TCMs and is potentially useful for the TCM quality assessment.  相似文献   
73.
This study analysed the use of sophora flower bud extract for dyeing and the resulting colour character and fastness of dyed silk fabric. The pigment composition on the silk fabric and recycling of this extract were also studied. The results indicated that the dyed silk fabric possessed good washing, rubbing and perspiration fastness, and the pigment composition on the silk fabric was mainly rutin and quercetin. The average recovery rate of the dye was 55.00%. These results demonstrate that the sophora flower bud extract is an effective natural dye.  相似文献   
74.
FAAS法测定甘青铁线莲花中微量元素   总被引:6,自引:3,他引:3  
采用浓硝酸-高氯酸(4∶1)溶解消化方法进行样品处理,用火焰原子吸收光谱法对甘青铁线莲花中K,Mg,Ca,Na,Fe,Zn,Mn,Cu,Cd,Ni和Co(11种)微量元素进行了分析测定,测定介质为4%硝酸溶液。实验研究了测定不同元素仪器的最佳工作条件、方法的准确性和精密度。结果表明,在选定的测定条件下,甘青铁线莲花中各元素间相互干扰小,对测定结果无明显影响。方法的标准曲线线性关系良好(r=0.987 1~1.000 0),方法回收率(n=7)在98.3%~105.1%之间,RSD值(n=7)在0.23%~1.07%,能用于甘青铁线莲花中多种微量元素的同时测定,该方法快速、简单,准确度和精密度均较好,并能达到分析要求。甘青铁线莲花中Ca,Mg,K,Cu,Fe,Zn,Mn,Na和Co含量分别为206.30,284.50,3 415.20,0.116 6,62.171,3.275,67.826 5,28.00,0.133 3 mg(100 g)-1,未检出Cd和Ni。研究结果为进一步探讨甘青铁线莲草药的功效提供了理论依据。  相似文献   
75.
微波消解-原子吸收光谱法测定槐花和大黄中微量元素   总被引:22,自引:0,他引:22  
采用微波消解-火焰原子吸收光谱法和石墨炉原子吸收光谱法测定了中药槐花和大黄中铜、铁、锌、镉、铬和铅。研究了槐花和大黄的微波消解试剂和消解条件。在原子吸收光谱测定的最佳条件下测定槐花和大黄中铜、铁、锌、镉、铬和铅。方法的回收率在89.2%~112.0%之间。  相似文献   
76.
77.
Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0–50% MeOH in water), the pH level of those solvents (3–7), the extraction temperature (10–70 °C), and the sample:solvent ratio (0.5 g:10 mL–0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.  相似文献   
78.
The aim of this work is to study the main thermoluminescence (TL) characteristics of the inorganic polyminerals extracted from dehydrated Jamaica flower or roselle (Hibiscus sabdariffa L.) belonging to Malvaceae family of Mexican origin. TL emission properties of the polymineral fraction in powder were studied using the initial rise (IR) method. The complex structure and kinetic parameters of the glow curves have been analysed accurately using the computerized glow curve deconvolution (CGCD) assuming an exponential distribution of trapping levels. The extension of the IR method to the case of a continuous and exponential distribution of traps is reported, such as the derivation of the TL glow curve deconvolution functions for continuous trap distribution. CGCD is performed both in the case of frequency factor, s, temperature independent, and in the case with the s function of temperature.  相似文献   
79.
In this paper,we are dealing with the study of the metric dimension of some classes of regular graphs by considering a class of bridgeless cubic graphs called the flower snarks Jn,a class of cubic convex polytopes considering the open problem raised in [M.Imran et al.,families of plane graphs with constant metric dimension,Utilitas Math.,in press] and finally Harary graphs H 5,n by partially answering to an open problem proposed in [I.Javaid et al.,Families of regular graphs with constant metric dimension,Utilitas Math.,2012,88:43-57].We prove that these classes of regular graphs have constant metric dimension.  相似文献   
80.
《Analytical letters》2012,45(1):74-86
A simple, fast, and effective method has been presented for the determination of jasmonates in plant samples by polymer monolith microextraction (PMME). A poly (methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith-based device was developed for extraction, purification, and concentration; HPLC-UV was used for evaluation. To realize the best microextraction efficiency, parameters such as sample pH value, flow rate, and sample volume were systematically examined and optimized. Aqueous solution (5 mL) of jasmonates at pH 3.0 was selected as sample solution, and loaded onto the monolith at flow rate of 0.15 mL/min; finally, 50 μL of acetonitrile was used for elution. The proposed method exhibited impressive enrichment efficiency (almost 100-fold) and the limits of detection for jasmonic acid and methyl jasmonate obtained 0.5 and 2 ng/mL by using UV detection. Wide linear ranges were also observed (2–2000 and 5–2000 ng/mL) for both jasmonic acid and methyl jasmonate, with R2 > 0.999. The developed PMME-HPLC method was successfully applied to the determination of jasmonates in fresh wintersweet flowers with recoveries in the range of 91.9–97.2%. The result was confirmed by an HPLC-MS method. The PMME method was also compared with a conventional C18-SPE method and exhibited better clean-up efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号