首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  国内免费   40篇
化学   112篇
力学   2篇
物理学   14篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   11篇
  2014年   14篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
排序方式: 共有128条查询结果,搜索用时 46 毫秒
121.
Dioscorea opposite has been widely used in traditional herbal medicine in the Far East, ameliorating symptoms ranging from abdominal swelling to pain. Previous studies have focused on understanding the chemical components that lead to the medicinal effects of the extract. In this study, we examined the nanostructures formed by the soluble and insoluble parts of the sticky excretion from the mucilaginous rhizome of Dioscorea opposite and evaluated their cellular response. Using atomic force microscopy, we found that the soluble extract of the excretion had the capacity to form a nanofibrillar scaffold composed of uniform ~10 nm nanofibers with a typical pore size of ~40 nm, while the insoluble extract formed some nanofibers without specific structure. Cellular response to the two types of nanostructures was tested by seeding with HeLa and MC3T3 cells. The observations suggested that the nanofibrillar scaffold formed from the soluble extract provided an excellent platform for HeLa cell attachment and growth and to a lesser degree for MC3T3 cells, while nanofibers from the insoluble extract displayed no cell attachment and growth. Further analysis by direct incubation of the soluble extract with growing cells indicated that components from the extract preferentially bound to HeLa cells, but not to MC3T3 cells, which might help explain the observed preference of HeLa cells on the nanofibrillar scaffold. The nanofibrillar scaffold created from the Dioscorea opposite extract and its ability to sustain the attachment of specific cell types demonstrate the potential for this natural nanomaterial in tissue engineering applications.  相似文献   
122.
以聚乙烯吡咯烷酮(PVP)和金属硝酸盐为原料,采用改进的静电纺丝法制备了直径均匀、表面光滑、定向排列的Co0.8Zn0.2Fe2O4/PVP纳米纤维前驱体,经热处理后得到定向排列的铁氧体纳米纤维.对前驱体纤维的热分解过程及Co0.8Zn0.2Fe2O4(CZFO)的结构、物相及形貌进行了表征.结果表明,在空气中经550~950℃热处理3 h后均得到纯相、结晶良好的尖晶石型钴锌铁氧体;在2000 r/min转速下收集的复合纤维形貌最佳,直径约300 nm;经750℃热处理后纤维直径约为70 nm,室温下测得饱和磁化强度为66.1 A.m2/kg,矫顽力达到最大值6.6 A/m,表明钴锌尖晶石型铁氧体单畴临界尺寸约为44 nm.与CoFe2O4相比,CZFO的饱和磁化强度升高,矫顽力下降,并且CZFO的纤维与粉末的磁特性有明显的区别.  相似文献   
123.
Electrospinning has been widely used to produce micro/nanosized fibres. Although the method is very simple, easy, and effective for obtaining nanosized material, the fabrication of three dimensional (3D) shapes comprised of micro/nanofibres has been a major obstacle for use in tissue engineering. In this study, a new electrospinning method to fabricate controllable 3D micro/nanofibrous structure (with thickness over 3 mm) is suggested. The fabricated 3D fibrous structure was fully porous and successfully consisted of submicron-sized fibres. However, the pores in the 3D fibrous structure were too small (5–10 μm), so we used a femtosecond laser process to achieve enough cell infiltration and proliferation in the thickness direction of the 3D structure. By controlling appropriate processing conditions, we can successfully fabricate a highly porous 3D micro/nanofibrous structure with various pore sizes ranging from 189 ± 28 μm to 380 ± 21 μm. The fabricated 3D fibrous scaffolds were assessed for in vitro biological capabilities by culturing osteoblast like cells (MG63). Compared with the rapid-prototyped PCL scaffold, the 3D fibrous scaffold exhibited significantly higher biological activities (initial cell attachment and cell proliferation) due to the topographical structure of micro/nanofibres.  相似文献   
124.
以均苯二酐和二苯醚二胺为原料合成聚酰胺酸溶液,通过静电纺丝法制得聚酰胺酸纳米纤维膜.利用原位红外技术研究亚胺化进程,并以优化的条件制得聚酰亚胺纳米纤维膜.研究结果表明,当升温速率为2℃/min时,在350℃可实现100%亚胺化;升温速率过快,纳米纤维膜的亚胺化程度较低;采用快速-慢速相结合的升温方法,则可以有效地提高亚胺化效率.  相似文献   
125.
同轴静电纺丝法在纳米中空Ti02纤维中填充Ag的应用   总被引:2,自引:0,他引:2  
以聚乙烯吡咯烷酮(PVP)溶胶,钛酸四正丁酯和PVP溶胶,银颗粒为前驱体,以共轴静电纺丝法制备了银填充的TiO2中空纳米纤维.将双组分纤维在200℃下热处理去除乙醇与表面吸附水后,继而在空气气氛中焙烧至600℃.可以得到在内表面上沉积银颗粒的TiO2纳米管,银颗粒的直径为5-40 nm,TiO2纳米管的外径150-300 nm.管臂厚10-20 nm.用红外吸收光谱(IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试手段对超细纤维进行了表征.中空纤维的直径和管壁可以通过改变电纺参数来调节.与Ag-TiO2纳米纤维、TiO2纳米中空纤维、TiO2纳米纤维及TiO2纳米粉体相比较,Ag颗粒填充的TiO2纳米中空纤维在光分解亚甲基蓝上表现出了更好的光催化性能.  相似文献   
126.
Poly(4-vinylpyridine)(P4-VP) nanofiber and fluoresent poly(4-vinylpyridine)/porphyrin(P4-VP/TPPA) nanofiber were respectively prepared by electrospinning. The effect of the concentration of P4-VP/dimethylformamide (DMF) electrospinning solutions on the morphology of P4-VP nanofiber was investigated and it was found that the average diameter of the nanofiber of P4-VP/DMF increased with the increase of the concentration of the spinning solution. After the addition of TPPA to the P4-VP/DMF spinning solution, the diameter of P4-VP/TPPA nanofiber became even due to the increase of the conductivity of the P4-VP/DMF-TPPA solution. The photoluminescent(PL) spectral analysis indicates that the emission peak position of P4-VP/TPPA nanofiber is almost the same as that of pure TPPA at about 650 nm without peak shift, and when it was stored for 20 days, the emission peak of P4-VP/TPPA nanofiber is also at 650 nm, indicating that the fluorescent property of P4-VP/TPPA nanofiber is stable. Fourier-transform iufrared(FTIR) spectrum confirms the chemical composition of the resulting P4-VP/TPPA composite nanofiber.  相似文献   
127.
刘海清 《高分子科学》2010,28(5):781-788
<正>The stability ofpoly(vinyl alcohol)(PVA) nanofibrous mats in water media was improved by post-electrospinning treatments.Bifunctional glutaraldehyde(GA) in methanol was used as a crosslinking agent to stabilize PVA nanofiber,but fiber twinning was observed frequently,and the highly porous structure of PVA nanofibrous mats was destroyed when the crosslinked fiber was soaked in water.To overcome this shortcoming,chitosan(CS) was introduced into the PVA spinning solution to prepare PVA/CS composite nanofibers.Their treatment in GA/methanol solution could retain the fiber morphology of PVA/CS nanofibers and porous structure of PVA/CS nanofibrous mats even if they were soaked in aqueous solutions for 1 month.Scanning electron microscopy(SEM),X-ray diffraction(XRD),thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC) were applied to characterize the physicochemical structure and thermal properties of PVA nanofibers.It was found that the water resistance of PVA nanofibrous mats was enhanced because of the improvement of the degree of crosslinking and crystallinity in the electrospun PVA fibers after soaking in GA/methanol solution.  相似文献   
128.
Biological ion channels existing in organisms are critical for many biological processes. Inspired by biological ion channels, the heterogeneous electrospinning nanofiber membranes (HENM) with functional ion channels are constructed by electrospinning technology. The HENM successfully realizes ion-gating effects, which can be used for tunable energy conversions. Introduction of pyridine and carboxylic acid groups into the HENM plays an important role in generating unique and stable ion transport behaviors, in which gates become alternative states of open and close, responding to symmetric/asymmetric pH stimulations. Then we used the HENM to convert osmotic energy into electric energy which reach a maximum value up to 12.34 W m−2 and the output power density of HENM-based system could be regulated by ion-gating effects. The properties of the HENM provide widespread potentials in application of smart nanofluidic devices, energy conversion, and water treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号