首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   11篇
  国内免费   11篇
化学   287篇
晶体学   6篇
力学   78篇
综合类   2篇
数学   116篇
物理学   230篇
  2023年   5篇
  2022年   12篇
  2021年   5篇
  2020年   13篇
  2019年   10篇
  2018年   6篇
  2017年   11篇
  2016年   17篇
  2015年   19篇
  2014年   42篇
  2013年   36篇
  2012年   26篇
  2011年   49篇
  2010年   50篇
  2009年   76篇
  2008年   75篇
  2007年   58篇
  2006年   28篇
  2005年   33篇
  2004年   31篇
  2003年   12篇
  2002年   22篇
  2001年   22篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有719条查询结果,搜索用时 812 毫秒
151.
152.
153.
154.
A simple method is proposed for the determination of the release kinetics of small molecular weight drugs from amorphous PHB. The method uses the hipsochromic shift of the absorbance of active molecules caused by changes in the UV–Vis spectra as an effect of changing environment. Fuchsine with a strong hypsochromic shift was used as model drug in the experiments. A simple experimental setup was created which consists of the positioning of a thin PHB film into the center of the cell of a spectrometer. The light goes through the film and the surrounding solution and records their spectra simultaneously. The arrangement makes possible the quantitative determination of the dissolution of the drug without any further interference. The solution of Fick's second law under the initial and boundary conditions of the experimental setup and the numerical solution of the equation allow the quantitative analysis of the experimental results and the prediction of release kinetics. Excellent agreement was found between prediction and the experimental results. The approach made possible also the determination of the diffusion coefficient of the model drug in amorphous PHB. The developed method can be used for all polymers and with all drugs, which show sufficiently strong hypsochromic shift during their transfer from the polymer to the solution phase.  相似文献   
155.
156.
157.
N. Prosperini 《Physica A》2007,383(2):595-602
In this contribution, particle size distributions (PSD) of soil samples are analyzed by fractal methods. Different scaling domains, characterizing different ranges of particle sizes, are identified. Numerical models based on cellular automata are presented with the aim to understand the basic mechanisms responsible for the occurrence of multiple scaling domains in soil PSD. Numerical simulations are in good agreement with natural data and furnish a conceptual framework to explain the features observed in the PSD of studied soil samples.  相似文献   
158.
A general procedure is presented for developing data-based, non-parametric models of non-linear multi-degree-of-freedom, non-conservative, dissipative systems. Two broad classes of methods are discussed: one relying on the representation of the system restoring forces in a polynomial-basis format, and the other using artificial neural networks to map the complex transformations relating the system state variables to the needed system outputs. A non-linear two-degree-of-freedom system is used to formulate the approach under discussion and to generate synthetic data for calibrating the efficiency of the two methods in capturing complex non-linear phenomena (such as dry friction, hysteresis, dead-space non-linearities, and polynomial-type non-linearities) that are widely encountered in the applied mechanics field. Subsequently, a reconfigurable test apparatus was used to generate experimental measurements from a physical non-linear “joint” involving two-dimensional motion (translation and rotation) and complicated interaction forces between the different motion axes, among its internal elements. Both the polynomial-basis approach and the neural network method were used to develop high-fidelity, non-parametric models of the physical test article. The ability of the identified models to accurately “generalize” the essential features of the non-linear system was verified by comparing the predictions of the models with experimental measurements from data sets corresponding to different excitations than those used for identification purposes. It is shown that the identification techniques under discussion can be useful tools for developing accurate simulation models of complex multi-dimensional non-linear systems under broadband excitation.  相似文献   
159.
A mathematical model describing the dynamic emission of the Q-switched ruby laser has been adapted. The suggested model allows the investigation of the effects of a dye cell on the mode characteristics of the ruby laser and, moreover, the study of the effect of the laser input parameters on the output laser pulse. This model simulates the nonlinear effects of dye pulse modulation on the laser emission.In addition, a numerical solution of a nonlinear rate equation system of the adapted model is discussed. The solution estimates the density of the emitted radiation, population inversion and energy transfer processes of the ruby laser rod and dye cell for different emission regimes (one pulse regime, free running pulses, repetition periodic pulses). The estimated results of the laser output pulse characteristics are in a good agreement with the other calculated and experimental results.  相似文献   
160.
Common thermoplastic films used in the packaging industry have a thickness lower than 100 μm, and present low absorption to CO2 laser radiation. This characteristic renders the use of cutting parameters, predicted by models developed for thicker thermoplastics inappropriate. In addition, the usual procedures involve the use of an assisting gas, responsible for removing the melted material, which, when processing thin films, induces changes in position in the material. A new theoretical model describing the temperature distribution on thin thermoplastic material during laser cutting was later developed. The heat conduction was solved analytically by the Green function method and heating and cooling thermal stress evolution was taken into consideration. The laser beam diameter over the samples provides the possibility of obtaining two cut operations: a simple cut, on beam focus, and a cut with welding, defocusing the beam. Engineering parameters predicted by the model were applied to cutting superposed high- and low-density polyethylene and polypropylene samples, transparent and white, with thicknesses between 10 and 100 μm, and experimentally validated.Proper modeling and the introduction of a reflective substrate under the samples allowed the improvement of process efficiency and the achievement of cutting operations up to 20 m s−1, and cut with welding up to 14 m s−1; an order of magnitude of improvement on industrial speeds previously attained for this operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号