首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   330篇
  国内免费   333篇
化学   1552篇
晶体学   45篇
力学   100篇
综合类   9篇
数学   19篇
物理学   505篇
  2024年   13篇
  2023年   57篇
  2022年   93篇
  2021年   111篇
  2020年   153篇
  2019年   91篇
  2018年   100篇
  2017年   62篇
  2016年   108篇
  2015年   71篇
  2014年   57篇
  2013年   93篇
  2012年   78篇
  2011年   92篇
  2010年   94篇
  2009年   128篇
  2008年   113篇
  2007年   106篇
  2006年   113篇
  2005年   94篇
  2004年   91篇
  2003年   72篇
  2002年   46篇
  2001年   40篇
  2000年   40篇
  1999年   23篇
  1998年   17篇
  1997年   15篇
  1996年   15篇
  1995年   8篇
  1994年   16篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有2230条查询结果,搜索用时 36 毫秒
61.
Hydrothermal reaction of copper(II) acetate, 2,2′-bipyridine (bipy) and NH4VO3 at 170 °C lead to a new layered polyoxovanadate with organically covalent-bonded copper(II) complex, Cu2(bipy)2V6O17 (1). Cu2(bipy)2V6O17 (1) is a new copper(II) vanadium(V) oxide featuring a new layered architecture, in which the V2O7 dimeric units and the cyclic tetranuclear V4O12 cluster units are interconnected via corner sharing into a unique one-dimensional {V6O17}4− anionic chain, such chains are further bridged by {Cu(bipy)}2+ complex cations into a 010 organic–inorganic hybrid layer.  相似文献   
62.
The hydrothermal reaction of UO3, WO3, and CsIO4 leads to the formation of Cs6[(UO2)4(W5O21)(OH)2(H2O)2] and UO2(IO3)2(H2O). Cs6[(UO2)4(W5O21)(OH)2(H2O)2] is the first example of a hydrothermally synthesized uranyl tungstate. It's structure has been determined by single-crystal X-ray diffraction. Crystallographic data: tetragonal, space group Icm, , , Z=4, MoKα, , R(F)=2.84% for 135 parameters with 2300 reflections with I>2σ(I). The structure is comprised of two-dimensional anionic layers that are separated by Cs+ cations. The coordination polyhedra found in the novel layers consist of UO7 pentagonal bipyramids, WO6 distorted octahedra, and WO5 square pyramids. The UO7 polyhedra are formed from the binding of five equatorial oxygen atoms around a central uranyl, UO22+, unit. Both bridging and terminal oxo ligands are employed in forming the WO5 square pyramidal units, while oxo, hydroxo, and aqua ligands are found in the WO6 distorted octahedra. In the layers, four (UO2)O5 polyhedra corner share with equatorial oxygen atoms to form a U4O24 tetramer entity with a square site in the center; a tungsten atom populates the center of each of these sites to form a U4WO25 pentamer unit. The pentamer units that result are connected in two dimensions by edge-shared dimers of WO6 octahedra to form the two-dimensional [(UO2)4(W5O21)(OH)2(H2O)2]6- layers. The lack of inversion symmetry in Cs6[(UO2)4(W5O21)(OH)2(H2O)2] can be directly contributed to the WO5 square pyramids found in the pentamer units. In the structure, all of these polar polyhedra align their terminal oxygens in the same orientation, along the c axis, thus resulting in a polar compound.  相似文献   
63.
Hydrothermal reactions of cadmium(II) chloride with three amino-diphosphonic acids, C6H5CH2N(CH2PO3H2)2 (H4L1), C6H5CH2CH2N(CH2PO3H2)2 (H4L2) and 4-CH3-C6H4CH2N (CH2PO3H2)2) (H4L3) resulted in three new metal amino-diphosphonates, namely, Cd(H3L1)2, 1 Cd(H3L2)2·2H2O 2 and Cd(H3L3)23. In all three complexes, the Cd(II) ion is octahedrally coordinated by six phosphonate oxygen atoms from six ligands. Complexes 1 and 3 have a similar structure in which the CdO6 octahedra are cross-linked by bridging ligands into a double chain along the c-axis, such double chains are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form 〈100〉 and 〈200〉 layers with the phenyl groups of the ligands orientated toward the interlayer space. The structure of complex 2 features a 〈100〉 cadmium(II) diphosphonate layer. The effects of the substitute groups attached to the amine groups on the structures of the metal phosphonates are also discussed.  相似文献   
64.
SnNb2O6 and Sn2Nb2O7 nanosheets were synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. Compared with Sn2Nb2O7 and the previously reported pure Sn-based anode materials, the SnNb2O6 electrode exhibited outstanding cycling performance.  相似文献   
65.
With a hydrothermal technique, a layered titanium phosphate with the formula Ti2(H2PO4)(HPO4)(PO4)2 · 0.5C6N2H16 (denoted TP-J2) has been prepared by treating the Ti/H3PO4/H2O/1-methylpiperazine system directly. The as-synthesized products were characterized by powder X-ray diffraction, CP-MAS solid-state 31P NMR spectroscopy, thermogravimetric and differential thermal analyses (TG-DTA). The structure was solved by single-crystal X-ray diffraction analysis and it presents an extended γ-phase intercalated with organic amine. Crystal data: triclinic, , a = 8.106 (2) Å, b = 8.197 (2) Å, c = 11.658 (2) Å.  = 78.32 (3)°, β = 80.85 (3)°, γ = 77.90 (3)°, Z = 2. Additionally, the intercalation behavior of TP-J2 with n-alkyl monoamine (n = 2, 3, 4, 6, 8, 10 and 12) was investigated. Owing to the strong brønsted base, N,N′-dimethylpiperazine, resides in the interlayer, it presented unusual features of TP-J2 in contrast with that of γ-Tip.  相似文献   
66.
Zinc ions can be exchanged in sol-gel zirconium phosphate by using the batch or hydrothermal method. The zinc materials obtained that undergo thermal treatment after complete dehydration, can rehydrate fully or partially depending on whether half or all the zinc ions are exchanged. At high temperature syntherization is evident. By flowing sulfide acid over the zinc forms, zinc sulfide particles are formed and their amount depends on the length of time of the gas flow and on the state of hydration of the original material. This is not the case in the half exchanged zinc zirconium phosphate material. The decomposition temperature of the ZnS particles depends on their position in the exchanger: whether on the surface or between the layers of the host matrix. The XRD patterns of the materials obtained are similar to those of the sol-gel zirconium phosphate. The presence of ZnS particles is evident.  相似文献   
67.
Single crystals of {[Cu(TO)2(H2O)2](NO3)2}n (TO: 1, 2, 4‐triazol‐5‐one) were grown by slow evaporation from aqueous solution. It crystallizes in the orthorhombic space group Pbca, with a = 7.082(1), b = 10.285(1), c = 17.911(3)Å, V = 1304.6(3)Å3, Z = 4. The CuII distorted octahedra are bridged by bidentate TO ligands into infinite 2‐D interlaced rhombic grid‐like network planes, {[Cu(TO)2(H2O)2]2+}n. Hydrogen bonds, electrostatic interactions, and weak van der Waals' forces assemble these planes and the NO3 anions to a layered structure. The title compound decomposes at 153.4 °C to the final products, Cu(CN)2 and CuO.  相似文献   
68.
The compound La2Ca2MnO6(O2) has been synthesized from La2Ca2MnO7 heated at 1123 K under high pressure (4 GPa) with KClO3 as oxygen source. The crystal structure has been refined from X-ray powder data in the space group. The unit-cell parameters are a=5.6335(2) Å and c=17.4879(8) Å. Perpendicular to the c-axis, the structure is built up by the periodic stacking of two close packed [LaO3] layers separated by a layer of composition [Ca2O2] containing (O2)2− peroxide ions. This oxide belongs to the family of compounds formulated as [A2O2−δ][AnBn−1O3n] for n=2 and δ=0. It is the first member of the series where the thickness of the perovskite slab corresponds to one [BO6] (B=Mn) octahedron. The structural relationships with La2Ca2MnO7 are discussed and the magnetic properties show that in both phases manganese is tetravalent.  相似文献   
69.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   
70.
Photoelectrochemical(PEC) water splitting is a promising approach for renewable hydrogen production.However,the practical PEC solar-to-fuel conversion efficiency is still low owing to poor light absorption and rapid recombination of charge carriers in photoelectrode.In this work,we report a ternary photoanode with simultaneously enhancement of light absorption and water oxidation efficiency by introducing copper phthalocyanine(CuPc) and nickel iron-laye red double hydroxide(NiFe-LDH) on TiO_2(denoted as TiO_2/CuPc/NiFe-LDH).An experimental study reveals that CuPc loading on TiO_2 bring strong visible light absorption;NiFe-LDH as an oxygen evolution reaction catalyst efficiently accelerates the surface water oxidation reaction.This synergistic effect of CuPc and NiFe-LDH gives enhanced photocurrent density(2.10 mA/cm2 at 0.6 V vs.SCE) and excellent stability in the ternary TiO_2/CuPc/NiFeLDH photoanode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号