首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   5篇
力学   3篇
物理学   8篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  1997年   1篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
11.
阐述了目前HCFCs替代的形势、替代制冷剂和替代技术路线。从各个方面介绍了几种有潜力的单一替代制冷剂R32、R161、R1234yf和R1234ze等。并对将来替代制冷剂的发展进行分析,认为混合制冷剂是大势所趋。  相似文献   
12.
The potential of liquefied gases, n-butane, dimethyl ether, and HFO-1234ze as effective and green alternative solvents to substitute hexane has been evaluated for the extraction of aromatic compounds from dry lavender flowers (Lavandula angustifolia Mill.) and fresh orange peels (Citrus sinensis (L.) Osbeck). The performance of these liquefied gases as solvents has been evaluated in terms of yield, olfactory perception, and composition of the extract and also in terms of energy used, green and economic impacts, and regulatory issues. First, a predictive evaluation of the solvation performance of each solvent was carried out using simulations with the conductor-like screening model for real solvent. Then solid–liquid extractions were performed using liquefied gases at a laboratory scale to determine the extraction yield, the chemical composition, and the olfactory perception of each extract. Finally, the applicability of liquefied gas extractions in an industrial process was assessed, taking into account the potential impact on process, quality, safety, regulation, and environment.  相似文献   
13.
对带膨胀机的R134a与R1234yf制冷系统进行理论分析,并与不带膨胀机的系统进行比较。研究表明:HFC134a的排气温度明显高于HFO1234yf,HFC134a的排气温度随着蒸发温度的升高而降低,HFO1234yf的排气温度随着蒸发温度的升高而升高;HFC134a与HFO1234yf的单位制冷量都是随着蒸发温度的升高而增大,但HFC134a的单位制冷量明显高于HFO1234yf,其平均高于HFO1234yf约34.9kW/kg;HFO1234yf压缩机输入功率明显高于HFC134a,HFC134a的系统COP高于HFO1234yf的系统COP,且二者都是随着蒸发温度的升高而升高。在制冷系统中加入膨胀机后,对HFC134a产生了显著的影响,在蒸发温度-10℃时变化最为明显,其单位制冷量增大32%,压缩机输入功率降低12.1%,系统COP降低19.8%,膨胀机的加入并没有影响HFO1234yf系统,其各项参数均未发生明显变化。在HFO1234yf制冷系统中应用膨胀机的效果逊于HFC134a制冷系统。  相似文献   
14.
对HFC134a和HFO1234yf应用于汽车空调进行了理论分析,研究表明:HFC134a的排气温度明显高于HFO1234yf,HFC134a的排气温度随着蒸发温度的升高而降低,HFO1234yf的排气温度随着蒸发温度的升高而升高;HFC134a与HFO1234yf的单位制冷量都是随着蒸发温度的升高而增大,但HFC134a的单位制冷量明显高于HFO1234yf,其平均高于HFO1234yf约34.9kW/kg;HFO1234yf压缩机输入功率明显高于HFC134a;HFC134a的系统COP高于HFO1234yf的系统COP,且二者都是随着蒸发温度的升高而升高,蒸发温度为-10℃时,其系统COP分别为3.739和3.493,蒸发温度为18℃时,其系统COP分别为9.6和9.36。  相似文献   
15.
The general equation that describes the AC magnetic susceptibility response of the superconducting system due to the change of varying AC field has been reviewed. By using the AC susceptibility measurements, the temperature, magnetic field and current density dependence of the effective pinning potential U(T, H, J) for our Pb-doped Hg-1234 superconductor has been determined. It is found that the fast drop of the effective pinning potential with current density is due to the large value of the characteristic exponent μ which depends on the existing types of non-superconducting phases that form the intergrowth structures with the dominant matrix. The characteristic curve of electric field E(J) against the current density J has been obtained from the AC susceptibility technique. For consideration of current relaxation due to the presence of giant flux creep, we have studied and determined the temperature dependence of the critical current density Jc for our specimen.  相似文献   
16.
This paper reports an experimental investigation of the heat transfer performance of the new low-GWP refrigerants, R1234yf and R1234ze(E), during flow boiling heat transfer inside a horizontal high porosity copper foam with 5 Pores Per Inch (PPI). Metal foams are a class of cellular structured materials consisting of a stochastic distribution of interconnected pores; these materials have been proposed as effective solutions for heat transfer enhancement during both single and two-phase heat transfer. R1234yf and R1234ze(E) refrigerants are appealing alternatives of the more traditional R134a by virtue of their negligible values of GWP and normal boiling temperatures close to that of R134a, which make them suitable solution in several different applications, such as: refrigeration and air conditioning and electronic thermal management. This work compares the two-phase heat transfer behaviour of these new HFO refrigerants, studying the boiling process inside a porous medium and permitting to understand their effective heat transfer capabilities. The experimental measurements were carried out by imposing three different heat fluxes: 50, 75, and 100 kW m−2, at a constant saturation temperature of 30 °C; the refrigerant mass velocity was varied between 50 and 200 kg m−2 s−1, whilst the mean vapour quality varied from 0.2 to 0.95. The two-phase heat transfer and pressure drop performance of the two new HFO refrigerants is compared against that of the more traditional R134a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号