首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   16篇
  国内免费   122篇
化学   407篇
晶体学   2篇
物理学   180篇
  2024年   1篇
  2023年   5篇
  2022年   10篇
  2021年   15篇
  2020年   14篇
  2019年   12篇
  2018年   11篇
  2017年   3篇
  2016年   7篇
  2015年   11篇
  2014年   17篇
  2013年   16篇
  2012年   40篇
  2011年   71篇
  2010年   49篇
  2009年   55篇
  2008年   37篇
  2007年   35篇
  2006年   33篇
  2005年   20篇
  2004年   21篇
  2003年   17篇
  2002年   17篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1980年   1篇
排序方式: 共有589条查询结果,搜索用时 15 毫秒
91.
R.S. Li 《Applied Surface Science》2009,255(9):4754-4757
Diamond-like carbon (DLC) films were deposited on Al substrates by electrodeposition technique under various voltages. The surface morphology and compositions of synthesized films were characterized by scanning electron microscopy and Raman spectroscopy. With the increase of deposition voltage, the sp2 phase concentration decreased and the surface morphology changed dramatically. The influence of deposition voltage on the field electron emission (FEE) properties of DLC films was not monotonic due to two adverse effects of deposition voltage on the surface morphology and compositions. The DLC film deposited under 1200 V exhibited optimum FEE property, including a lowest threshold field of 13 V/μm and a largest emission current density of 904.8 μA/cm2 at 23.5 V/μm.  相似文献   
92.
Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved.  相似文献   
93.
Arsenic trisulphide (As2S3) thin films have been deposited onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrates by electrodeposition technique using arsenic trioxide (As2O3) and sodium thiosulphate (Na2S2O3) as precursors and ethylene diamine tetracetic acid (EDTA) as a complexing agent. Double exposure holographic interferometry (DEHI) technique was used to determine the thickness and stress of As2S3 thin films. It was observed that the thickness of the thin film increases whereas film stress to the substrate decreases with an increase in the deposition time. X-ray diffraction and water contact angle measurements showed polycrystalline and hydrophilic surface respectively. The bandgap energy increases from 1.82 to 2.45 eV with decrease in the film thickness from 2.2148 to 0.9492 μm.  相似文献   
94.
Cadmium telluride thin films were deposited on conducting glass and titanium substrates by the pulse plating technique at different duty cycles in the range 10–50%. The films were characterised by X-ray diffraction and were found to possess single phase cubic structure. Optical studies indicated a direct band gap of 1.45 eV. Surface morphology of the films indicated that the crystallite size increases with increase of duty cycle. X-ray photoelectron spectroscopy studies confirmed the formation of CdTe. Electron-dispersive X-ray studies were made to estimate the composition. Cross-plane resistivity measurements indicated that the resistivity decreases with increase of duty cycle.  相似文献   
95.
Fabrication and magnetic properties of Ni-Zn nanowire arrays   总被引:2,自引:0,他引:2  
Ni-Zn nanowire arrays, with diameters of approximately 60 nm and lengths of around 40 μm, were fabricated by electrodeposition in porous anodic aluminum oxide templates at different electric potentials. X-ray diffraction observations demonstrated that the isolated nanowires had polycrystalline structure and that their phases changed with the deposition potential. The amount of deposited zinc in the nanowires increased with the deposition potential, whereas the amount of nickel decreased. Magnetic measurements showed that there was a gradual change of magnetism from isotropic to anistropic with increasing potential amplitude and that the coercivity reached a maximum value in the nanowire deposited at −1.35 V.  相似文献   
96.
A simple and controllable electrodeposition approach was proposed for one‐step construction of glucose biosensors by in situ co‐deposition of ferrocene‐branched chitosan derivatives (CS‐Fc), multiwalled carbon nanotubes (MWNTs), and glucose oxidase (GOD) onto electrode surface. The formation of CS‐Fc could not only effectively prevent the leakage of Fc and retain its electrochemical activity, but also provide a biocompatible microenvironment for retaining the native activity of the immobilized biomolecules. Further entrapment of MWNTs into the CS matrix improved electronic conductivity of the biocomposite significantly. The facile procedure of immobilizing GOD and the promising feature of biocomposite will offer a versatile platform to fabricate biosensors and bioelectronic devices.  相似文献   
97.
98.
PbSe films with different nanostructures, such as nanoparticles, nanohollows and hierarchical structures, can be synthesized by adjusting the current density and the reaction temperature via a convenient and efficient electrochemical route in the absence of hard template and surfactant. The calculated band gaps of the prepared PbSe nanoparticles and nanohollows were about 0.32 and 0.43 eV, respectively. This suggests that quantum size effect in nanohollows greatly influences their band gap. This preparation method possesses remarkable advantages, such as low cost, high efficiency and easy preparation, which are very suitable for preparing nanomaterials.  相似文献   
99.
In recent years, substantial scientific attention has been focused on renewable energy resources, which utilize natural resources for the production of electrical energy. Chalcopyrite semiconductors are used as one of the alternatives, Cu(In,Ga)Se2 (CIGS) and CuInS2 (CIS) are used for the fabrication of solar cells. These materials possess various properties Viz. ideal band gap (1.5?eV), high optical absorption, low light degradation, high radiation resistance, etc., hence they are suitable in the fabrication of solar cells. In contrast to other chalcopyrates, CuInS2 is nontoxic, low-cost and easy to prepare by simple deposition techniques. Several impurities were doped to CuInS2 bulks, to control conduction and also to obtain low resistivity. In this context, the structural, morphological and optical properties are reported for cobalt-doped CuInS2 (CIS2) thin films prepared by electro-deposition technique at room temperature. In the present study, we have used different cobalt concentration in the range of 0–5?wt.%. Doping of cobalt does not lead to the formation of any secondary phase, either in the form of metallic clusters or impurity complexes. However, with increase in cobalt concentration a decrease in the optical band gap, from 2.10 to 1.53?eV, is observed. In addition, implantation of cobalt in the CIS2 gave changes in structural and surface properties of the thin films obtained. These thin films are also subjected to elemental analysis using EDAX.  相似文献   
100.
The template strategy combined with electrodeposition technique has been used to produce copper nanowires in the cylindrical pores of track-etched polycarbonate membranes. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy have been used to characterize as-prepared copper nanowires. XRD study shows the face centered cubic crystal structure of copper nanowires. Williamson–Hall (WH) analysis has been used to determine the crystallite size and microstrain induced due to lattice deformation. FESEM results reveal that copper nanowires are continuous, well aligned with uniform diameter and having high aspect ratio. The optical absorption spectra exhibit a strong peak at 568 nm attributed to the surface plasmon resonance. The current–voltage (IV) characteristics show an ohmic behavior of the fabricated copper nanowires. The increase in resistivity of nanowires than that of bulk counterpart has been attributed to the surface and size effects in nanowires and explained in the light of Fuchs–Sondeimer and Mayadas–Shatzkes models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号